Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 75, 2020
Article Number 12
Number of page(s) 13
Published online 11 March 2020
  • AfzaliTabar M., Alaei M., Bazmi M., Khojasteh R.R., Koolivand-Salooki M., Motiee F., Rashidi A. (2017) Facile and economical preparation method of nanoporous graphene/silica nanohybrid and evaluation of its Pickering emulsion properties for Chemical Enhanced oil Recovery (C-EOR), Fuel 206, 453–466. [CrossRef] [Google Scholar]
  • Ahmadi M.A., Shadizadeh S.R. (2018) Spotlight on the new natural surfactant flooding in carbonate rock samples in low salinity condition, Sci. Rep. 8, 1, 10985. [CrossRef] [PubMed] [Google Scholar]
  • Al Matroushi M., Pourafshary P., Al Wahaibi Y. (2015) Possibility of nanofluid/gas alternating injection as an EOR method in an oil field, Paper Presented at the Abu Dhabi International Petroleum Exhibition and Conference, 9–12 November, Abu Dhabi, UAE. [Google Scholar]
  • Attia A.M. (2005) Effects of petrophysical rock properties on tortuosity factor, J. Pet. Sci. Eng. 48, 3–4, 185–198. [Google Scholar]
  • Badwaik H.R., Sakure K., Alexander A., Dhongade H., Tripathi D.K. (2016) Synthesis and characterisation of poly (acryalamide) grafted carboxymethyl xanthan gum copolymer, Int. J. Biol. Macromol. 85, 361–369. [CrossRef] [PubMed] [Google Scholar]
  • Bai Y., Shang X., Wang Z., Zhao X. (2018) Experimental study on hydrophobically associating hydroxyethyl cellulose flooding system for enhanced oil recovery, Energy Fuels 32, 6, 6713–6725. [Google Scholar]
  • Bera A., Belhaj H. (2016) Application of nanotechnology by means of nanoparticles and nanodispersions in oil recovery-A comprehensive review, J. Nat. Gas Sci. Eng. 34, 1284–1309. [Google Scholar]
  • Boggs S. Jr, Boggs S. (2009) Petrology of sedimentary rocks, Cambridge University Press, Cambridge, UK. [CrossRef] [Google Scholar]
  • Chiantore O. (2005) Mark-Houwink relationship, Encycl. Chromatogr. 2, 1019. [Google Scholar]
  • El-Hoshoudy A. (2018a) Quaternary ammonium based surfmer-co-acrylamide polymers for altering carbonate rock wettability during water flooding, J. Mol. Liq. 250, 35–43. [Google Scholar]
  • El-Hoshoudy A. (2018b) Synthesis of acryloylated starch-g-poly acrylates crosslinked polymer functionalized by emulsified vinyltrimethylsilane derivative as a novel EOR agent for severe polymer flooding strategy, Int. J. Biol. Macromol. 123, 124–132. [Google Scholar]
  • El-Hoshoudy A. (2019) Synthesis of acryloylated starch-g-poly acrylates crosslinked polymer functionalized by emulsified vinyltrimethylsilane derivative as a novel EOR agent for severe polymer flooding strategy, Int. J. Biol. Macromol. 123, 124–132. [CrossRef] [PubMed] [Google Scholar]
  • El-Hoshoudy A., Desouky S. (2018) Synthesis and evaluation of acryloylated starch-g-poly (Acrylamide/Vinylmethacrylate/1-Vinyl-2-pyrrolidone) crosslinked terpolymer functionalized by dimethylphenylvinylsilane derivative as a novel polymer-flooding agent, Int. J. Biol. Macromol. 116, 434–442. [CrossRef] [PubMed] [Google Scholar]
  • El-Hoshoudy A., Desouky S., Attia A. (2018) Synthesis of starch functionalized sulfonic acid co-imidazolium/silica composite for improving oil recovery through chemical flooding technologies, Int. J. Biol. Macromol. 118, 1614–1626. [CrossRef] [PubMed] [Google Scholar]
  • El-Hoshoudy A., Desouky S., Betiha M., Alsabagh A. (2016) Use of 1-vinyl imidazole based surfmers for preparation of polyacrylamide–SiO2 nanocomposite through aza-Michael addition copolymerization reaction for rock wettability alteration, Fuel 170, 161–175. [CrossRef] [Google Scholar]
  • El-hoshoudy A., Mohammedy M., Ramzi M., Desouky S., Attia A. (2019) Experimental, modeling and simulation investigations of a novel surfmer-co-poly acrylates crosslinked hydrogels for water shut-off and improved oil recovery, J. Mol. Liq. 277, 142–156. [Google Scholar]
  • Giraldo J., Benjumea P., Lopera S., Cortés F.B., Ruiz M.A. (2013) Wettability alteration of sandstone cores by alumina-based nanofluids, Energy Fuels 27, 7, 3659–3665. [Google Scholar]
  • Goldberg A., Hohenstein W., Mark H. (1947) Intrinsic viscosity-molecular weight relationship for polystyrene, J. Polym. Sci. 2, 5, 503–510. [CrossRef] [Google Scholar]
  • Hendraningrat L., Engeset B., Suwarno S., Li S., Torsæter O. (2013) Laboratory investigation of porosity and permeability impairment in Berea sandstones due to hydrophilic nanoparticle retention, Paper Presented at the Paper SCA2013-062 Presented at the International Symposium of the Society of Core Analysts Held in Napa Valley, California, USA. [Google Scholar]
  • Hu X., Ke Y., Zhao Y., Lu S., Yu C., Peng F. (2018) Synthesis and characterization of a β-cyclodextrin modified polyacrylamide and its rheological properties by hybriding with silica nanoparticles, Coll. Surf. A: Physicochem. Eng. Asp. 548, 10–18. [CrossRef] [Google Scholar]
  • Hu Z., Haruna M., Gao H., Nourafkan E., Wen D. (2017) Rheological properties of partially hydrolyzed polyacrylamide seeded by nanoparticles, Ind. Eng. Chem. Res. 56, 12, 3456–3463. [Google Scholar]
  • Kang X., Zhang J. (2013) Surfactant polymer (SP) flooding pilot test on offshore heavy oil field in Bohai Bay, China, Paper Presented at the SPE Enhanced Oil Recovery Conference, 2–4 July, Kuala Lumpur, Malaysia. [Google Scholar]
  • Kovalchuk T., Sfihi H., Korchev A., Kovalenko A., Ilin V., Zaitsev V., Fraissard J. (2005) Synthesis, structure, and acidic properties of MCM-41 functionalized with phosphate and titanium phosphate groups, J. Phys. Chem. B 109, 29, 13948–13956. [CrossRef] [PubMed] [Google Scholar]
  • Kumar A., Sharma S., Srivastava A., Kumar R. (2017) Synthesis of xanthan gum graft copolymer and its application for controlled release of highly water soluble Levofloxacin drug in aqueous medium, Carbohydr. Polym. 171, 211–219. [Google Scholar]
  • Kumar R.S., Sharma T. (2018) Stability and rheological properties of nanofluids stabilized by SiO2 nanoparticles and SiO2-TiO2 nanocomposites for oilfield applications, Coll. Surf. A: Physicochem. Eng. Asp. 539, 171–183. [CrossRef] [Google Scholar]
  • Li S., Gou S., Chen X., Duan M. (2018) Comb-shaped polyzwitterion with surface-activity obtained via N-maleoyl chitosan-modified HPAM for displacement of residual oil, New J. Chem. 42, 9, 6848–6857. [Google Scholar]
  • Liu R., Pu W., Sheng J.J., Du D. (2017) Star-like hydrophobically associative polyacrylamide for enhanced oil recovery: Comprehensive properties in harsh reservoir conditions, J. Taiwan Inst. Chem. Eng. 80, 639–649. [CrossRef] [Google Scholar]
  • Maerker J.M. (1975) Shear degradation of partially hydrolyzed polyacrylamide solutions, Soc. Pet. Eng. J. 15, 4, 311–322. [CrossRef] [Google Scholar]
  • Maghzi A., Kharrat R., Mohebbi A., Ghazanfari M.H. (2014) The impact of silica nanoparticles on the performance of polymer solution in presence of salts in polymer flooding for heavy oil recovery, Fuel 123, 123–132. [CrossRef] [Google Scholar]
  • Maghzi A., Mohebbi A., Kharrat R., Ghazanfari M. (2013) An experimental investigation of silica nanoparticles effect on the rheological behavior of polyacrylamide solution to enhance heavy oil recovery, Pet. Sci. Technol. 31, 5, 500–508. [Google Scholar]
  • Maurya N.K., Kushwaha P., Mandal A. (2017) Studies on interfacial and rheological properties of water soluble polymer grafted nanoparticle for application in enhanced oil recovery, J. Taiwan Inst. Chem. Eng. 70, 319–330. [CrossRef] [Google Scholar]
  • Maurya N.K., Mandal A. (2016) Studies on behavior of suspension of silica nanoparticle in aqueous polyacrylamide solution for application in enhanced oil recovery, Pet. Sci. Technol. 34, 5, 429–436. [Google Scholar]
  • McGeary D., Carlson D.H., Plummer C.C. (2001) Physical geology, McGraw-Hill Science/Engineering/Math, New York, USA. [Google Scholar]
  • Moradi B., Pourafshary P., Jalali F., Mohammadi M., Emadi M. (2015) Experimental study of water-based nanofluid alternating gas injection as a novel enhanced oil-recovery method in oil-wet carbonate reservoirs, J. Nat. Gas Sci. Eng. 27, 64–73. [Google Scholar]
  • Pandey S., Mishra S.B. (2011) Graft copolymerization of ethylacrylate onto xanthan gum, using potassium peroxydisulfate as an initiator, Int. J. Biol. Macromol. 49, 4, 527–535. [CrossRef] [PubMed] [Google Scholar]
  • Porter S. (1987) Physical geology, John Wiley and Sons Inc., New York. [Google Scholar]
  • Pu W.-F., Liu R., Wang K.-Y., Li K.-X., Yan Z.-P., Li B., Zhao L. (2015) Water-soluble core–shell hyperbranched polymers for enhanced oil recovery, Ind. Eng. Chem. Res. 54, 3, 798–807. [Google Scholar]
  • Salehi M.B., Vasheghani-Farahani E., Sefti M.V., Moghadam A.M., Naderi H. (2014) Rheological and transport properties of sulfonated polyacrylamide hydrogels for water shutoff in porous media, Polym. Adv. Technol. 25, 4, 396–405. [Google Scholar]
  • Sayyouh M.H., Al-Blehed M.S., Attia A.M. (1993) The effect of alkaline and polymer additives on phase behaviour of surfactant-oil-brine system at high salinity conditions, Rev. Inst. Fr. Pét. 48, 4, 359–369. [CrossRef] [Google Scholar]
  • Shamilov V., Babayev E., Kalbaliyeva E., Shamilov F. (2017) Polymer nanocomposites for enhanced oil recovery, Mater. Today: Proc. 4, S70–S74. [CrossRef] [Google Scholar]
  • Stöber W., Fink A., Bohn E. (1968) Controlled growth of monodisperse silica spheres in the micron size range, J. Coll. Interface Sci. 26, 1, 62–69. [Google Scholar]
  • Suh I.-S., Herbst H., Schumpe A., Deckwer W.-D. (1990) The molecular weight of xanthan polysaccharide produced under oxygen limitation, Biotechnol. Lett. 12, 3, 201–206. [Google Scholar]
  • Wang L., Wang Y., Pu H., Zhang C., Yin D., Wang L. (2012) Study on high-concentration polymer flooding in Lamadian oilfield, Daqing, Paper Presented at the SPE EOR Conference at Oil and Gas West Asia, 16–18 April, Muscat, Oman. [Google Scholar]
  • Wang X., Zhang Y., Luo W., Elzatahry A.A., Cheng X., Alghamdi A., Zhao D. (2016) Synthesis of ordered mesoporous silica with tunable morphologies and pore sizes via a nonpolar solvent-assisted stober method, Chem. Mater. 28, 7, 2356–2362. [Google Scholar]
  • Wasan D.T., Nikolov A.D. (2003) Spreading of nanofluids on solids, Nature 423, 6936, 156. [Google Scholar]
  • Xu Y., Gao P., Yang M., Huang G., Wang B. (2011) Synthesis and aqueous solution properties of a novel nonionic, amphiphilic comb-type polyacrylamide, J. Macromol. Sci., Part B 50, 9, 1691–1704. [CrossRef] [Google Scholar]
  • Yang-Chuan K., Guang-Yao W., Yi W. (2008) Preparation, morphology and properties of nanocomposites of polyacrylamide copolymers with monodisperse silica, Eur. Polym. J. 44, 8, 2448–2457. [Google Scholar]
  • Ye Z., Feng M., Gou S., Liu M., Huang Z., Liu T. (2013) Hydrophobically associating acrylamide-based copolymer for chemically enhanced oil recovery, J. Appl. Polym. Sci. 130, 4, 2901–2911. [Google Scholar]
  • Zargartalebi M., Kharrat R., Barati N. (2015) Enhancement of surfactant flooding performance by the use of silica nanoparticles, Fuel 143, 21–27. [CrossRef] [Google Scholar]
  • Zhong L., Oostrom M., Truex M.J., Vermeul V.R., Szecsody J.E. (2013) Rheological behavior of xanthan gum solution related to shear thinning fluid delivery for subsurface remediation, J. Hazard. Mater. 244, 160–170. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.