Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 75, 2020
Article Number 7
Number of page(s) 15
Published online 27 January 2020
  • Balaji K., Rabiei M., Suicmez V., Canbaz H., Agharzeyva Z., Tek S., Bulut U., Temizel C. (2018) Status of data-driven methods and their applications in oil and gas industry, 80th EAGE Conf. Exhib., 11–14 June, Copenhagen, Denmark, Society of Petroleum Engineers. [Google Scholar]
  • Carpenter C. (2014) Uncertainty evaluation of wellbore-stability-model predictions, J. Pet. Technol. 66, 1, 91–92. doi: 10.2118/0114-0091-JPT. [Google Scholar]
  • Chang C.-P., Lin Z.-S. (1999) Stochastic analysis of production decline data for production prediction and reserves estimation, J. Pet. Sci. Eng. 23, 149–160. doi: 10.1016/S0920-4105(99)00013-3. [Google Scholar]
  • Charles T., Guemene J.M., Corre B., Vincent G., Dubrule O. (2001) Experience with the Quantification of Subsurface Uncertainties, SPE Asia Pacific Oil and Gas Conference and Exhibition, 17–19 April, Jakarta, Indonesia, Society of Petroleum Engineers. doi: 10.2118/68703-ms. [Google Scholar]
  • Corre B., Thore P., Feraudy V.De, Vincent G., Elf T. (2000) Integrated uncertainty assessment for project evaluation and risk analysis, SPE European Petroleum Conference, 24–25 October, Paris, France, Society of Petroleum Engineers. [Google Scholar]
  • Costa L.A.N., Maschio C., Schiozer D.J. (2019) Evaluation of an uncertainty reduction methodology based on Iterative Sensitivity Analysis (ISA) applied to naturally fractured reservoirs, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 74, 40. doi: 10.2516/ogst/2019013. [CrossRef] [Google Scholar]
  • Dejean J., Blanc G. (1999) Managing uncertainties on production predictions using integrated statistical methods, SPE Annual Technical Conference and Exhibition, 3-6 October, Houston, Texas, Society of Petroleum Engineers. doi: 10.2523/56696-ms. [Google Scholar]
  • Delignette-Muller M.L., Dutang C. (2015) fitdistrplus: An R package for fitting distributions, J. Stat. Softw. 64, 1–34. doi: 10.18637/jss.v064.i04. [Google Scholar]
  • Feraille M., Marrel A. (2012) Prediction under uncertainty on a mature field, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 67, 193–206. doi: 10.2516/ogst/2011172. [CrossRef] [Google Scholar]
  • Fonseca Junior R.D., Gonçalves M.D.A.L., Azevedo L.F.A. (2009) Consideration of uncertainty in simulations of elevation and flow, An. do IV Semin. Elev. Artif. e Escoamento (in Portuguese: Consideração de Incerteza nas Simulações de Elevação e Escoamento). [Google Scholar]
  • Goda T., Sato K. (2014) History matching with iterative Latin hypercube samplings and parameterization of reservoir heterogeneity, J. Pet. Sci. Eng. 114, 61–73. doi: 10.1016/j.petrol.2014.01.009. [Google Scholar]
  • Grimstad B., Gunnerud V., Sandnes A., Shamlou S., Skrondal I.S., Uglane V., Ursin-Holm S., Foss B. (2016) A simple data-driven approach to production estimation and optimization, SPE Intell. Energy Int. Conf. Exhib., 6–8 September, Aberdeen, Scotland, UK. doi: 10.2118/181104-MS. [Google Scholar]
  • Iglewicz B., Hoagling D. (1993) Volume 16: How to detect and handle outliers, ASQC Basic Ref. Qual. Control Stat. Tech. [Google Scholar]
  • Jahanandish I., Salimifard B., Jalalifar H. (2011) Predicting bottomhole pressure in vertical multiphase flowing wells using artificial neural networks, J. Pet. Sci. Eng. 75, 336–342. doi: 10.1016/j.petrol.2010.11.019. [Google Scholar]
  • Mahjour S.K., Correia M.G., de Souza dos Santos A.A., Schiozer D.J. (2019) Developing a workflow to represent fractured carbonate reservoirs for simulation models under uncertainties based on flow unit concept, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 74, 15. doi: 10.2516/ogst/2018096. [CrossRef] [Google Scholar]
  • Maschio C., de Carvalho C.P.V., Schiozer D.J. (2010) A new methodology to reduce uncertainties in reservoir simulation models using observed data and sampling techniques, J. Pet. Sci. Eng. 72, 110–119. doi: 10.1016/j.petrol.2010.03.008. [Google Scholar]
  • Meyer D., Dimiitriadou E., Kurt H., Weingessel A., Leisch F., Cang C.-C., Lin C.-C. (2015) Misc functions of the department of statistics, probability, TU Wien, Vienna, Austria. [Google Scholar]
  • Monteiro D.D., Ferreira Filho V.M., Chaves G.S., De Santana R.S., Duque M.M., Granja-Saavedra A.L., Baioco J.S., Vieira B.F., Teixeira A.F. (2017) Uncertainty analysis for production forecast in oil wells, SPE Lat. Am. Caribb. Pet. Eng. Conf., 17-19 May, Buenos Aires, Argentina. doi: 10.2118/185550-MS. [Google Scholar]
  • Morita N. (1995) Uncertainty analysis of borehole stability problems, SPE Annual Technical Conference and Exhibition, 22–25 October, Dallas, Texas, Society of Petroleum Engineers, 533–542. doi: 10.2118/30502-ms. [Google Scholar]
  • Muggeo V.M.R. (2008) Segmented: An R package to fit regression models with broken-line relationships, R News 8, 20–25. doi: 10.1002/sim.1545. [Google Scholar]
  • Niño F.A.P. (2016) Wellbore stability analysis based on sensitivity and uncertainty analysis, SPE Annual Technical Conference and Exhibition, 26–28 September, Dubai, UAE, Society of Petroleum Engineers. [Google Scholar]
  • Sales L.P.A., Pitombeira-Neto A.R., de Athayde Prata B. (2018) A genetic algorithm integrated with Monte Carlo simulation for the field layout design problem, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 73, 24. doi: 10.2516/ogst/2018017. [CrossRef] [Google Scholar]
  • Schiozer D.J., de Souza dos Santos A.A., de Graça Santos S.M., von Hohendorff Filho J.C. (2019) Model-based decision analysis applied to petroleum field development and management, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 74, 46. doi: 10.2516/ogst/2019019. [CrossRef] [Google Scholar]
  • Sheng Y., Reddish D., Lu Z. (2006) Assessment of uncertainties in wellbore stability analysis, in: Wu W., Yu H.S. (eds), Modern trends in geomechanics, vol. 106, Springer, Berlin, Heidelberg. [Google Scholar]
  • Shields M.D., Zhang J. (2016) The generalization of latin hypercube sampling, Reliab. Eng. Syst. Saf. 148, 96–108. doi: 10.1016/j.ress.2015.12.002. [Google Scholar]
  • Spesivtsev P., Sinkov K., Sofronov I., Zimina A., Umnov A., Yarullin R., Vetrov D. (2018) Predictive model for bottomhole pressure based on machine learning, J. Pet. Sci. Eng. 166, 825–841. doi: 10.1016/j.petrol.2018.03.046. [Google Scholar]
  • Tyler K., Sandsdalen C., Maeland L., Aasen J.O., Siring E., Barbieri M. (1996) Integrated stochastic modeling in reservoir evaluation for project evaluation and risk assessment, SPE Annual Technical Conference and Exhibition, 6–9 October, Denver, Colorado, Society of Petroleum Engineers. doi: 10.2118/36706-ms. [Google Scholar]
  • Vapnik V. (1995) The nature of statistical learning theory, Springer-Verlag New York. doi: 10.1007/978-1-4757-3264-1. [CrossRef] [Google Scholar]
  • Zabalza-Mezghani I., Manceau E., Feraille M., Jourdan A. (2004) Uncertainty management: From geological scenarios to production scheme optimization, J. Pet. Sci. Eng. 44, 11–25. doi: 10.1016/j.petrol.2004.02.002. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.