Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 75, 2020
Article Number 22
Number of page(s) 19
Published online 15 April 2020
  • Shen J., Reule A.A.C., Semagina N. (2019) Ni/MgAl2O4 catalyst for low-temperature oxidative dry methane reforming with CO2, Int. J. Hydrogen Energy 44, 10, 4616–4629. [Google Scholar]
  • Abdalla A.M., Hossain S., Nisfindy O.B., Azad A.T., Dawood M., Azad A.K. (2018) Hydrogen production, storage, transportation and key challenges with applications: A review, Energy Convers. Manage. 165, 602–627. [CrossRef] [Google Scholar]
  • Li L., Tang D., Song Y., Jiang B., Zhang Q. (2018) Hydrogen production from ethanol steam reforming on Ni-Ce/MMT catalysts, Energy 149, 937–943. [CrossRef] [Google Scholar]
  • Passalacqua R., Centi G., Perathoner S. (2015) Solar production of fuels from water and CO2: Perspectives and opportunities for a sustainable use of renewable energy, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 70, 799–815. [CrossRef] [Google Scholar]
  • Tursunov O., Kustov L., Kustov A. (2017) A brief review of carbon dioxide hydrogenation to methanol over copper and iron based catalysts, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 72, 30–39. [CrossRef] [Google Scholar]
  • Rahnama H., Farniaei M., Abbasi M., Rahimpour M.R. (2014) Modeling of synthesis gas and hydrogen production in a thermally coupling of steam and tri-reforming of methane with membranes, J. Ind. Eng. Chem. 20, 4, 1779–1792. [Google Scholar]
  • Sengodan S., Lan R., Humphreys J., Du D., Xu W., Wang H., Tao S. (2018) Advances in reforming and partial oxidation of hydrocarbons for hydrogen production and fuel cell applications, Renew. Sustain. Energy Rev. 82, 761–780. [CrossRef] [Google Scholar]
  • Aziz M.A.A., Setiabudi H.D., Teh L.P., Annuar N.H.R., Jalil A.A. (2018) A review of heterogeneous catalysts for syngas production via dry reforming, J. Taiwan Inst. Chem. Eng. 101, 139–158. [CrossRef] [Google Scholar]
  • Abdulrasheed A., Jalil A.A., Gambo Y., Ibrahim M., Hambali H.U., Yusuf M., Hamid S. (2019) A review on catalyst development for dry reforming of methane to syngas: Recent advances, Renew. Sustain. Energy Rev. 108, 175–193. [Google Scholar]
  • Farniaei M., Abbasi M., Rahnama H., Rahimpour M.R., Shariati A. (2014) Syngas production in a novel methane dry reformer by utilizing of tri-reforming process for energy supplying: Modeling and simulation, J. Nat. Gas Sci. Eng. 20, 132–146. [Google Scholar]
  • Papari S., Kazemeini M., Fattahi M. (2013) Modelling-based optimisation of the direct synthesis of dimethyl ether from syngas in a commercial slurry reactor, Chin. J. Chem. Eng. 21, 6, 611–621. [CrossRef] [Google Scholar]
  • Chu R., Hou W., Meng X., Xu T., Miao Z., Wu G., Bai L. (2016) Catalytic kinetics of dimethyl ether one-step synthesis over CeO2–CaO–Pd/HZSM-5 catalyst in sulfur-containing syngas process, Chin. J. Chem. Eng. 24, 12, 1735–1741. [CrossRef] [Google Scholar]
  • Gangadharan P., Kanchi K.C., Lou H.H. (2012) Evaluation of the economic and environmental impact of combining dry reforming with steam reforming of methane, Chem. Eng. Res. Des. 90, 11, 1956–1968. [Google Scholar]
  • Jianjun H., Li D., Lee D.J., Zhang Q., Wang W., Zhao S., Zhang Z., He C. (2019) Integrated gasification and catalytic reforming syngas production from corn straw with mitigated greenhouse gas emission potential, Bioresour. Technol. 280, 371–377. [Google Scholar]
  • Arab Aboosadi Z., Jahanmiri A.H., Rahimpour M.R. (2011) Optimization of tri-reformer reactor to produce synthesis gas for methanol production using differential evolution (DE) method, Appl. Energy 88, 8, 2691–2701. [Google Scholar]
  • Kumar R., Kumar K., Choudary N.V., Pant K.K. (2019) Effect of support materials on the performance of Ni-based catalysts in tri-reforming of methane, Fuel Process. Technol. 186, 40–52. [CrossRef] [Google Scholar]
  • Farniaei M., Rahnama H., Abbasi M., Rahimpour M.R. (2013) Simultaneous production of two types of synthesis gas by steam and tri-reforming of methane using an integrated thermally coupled reactor: Mathematical modeling, Int. J. Energy Res. 38, 1260–1277. [CrossRef] [Google Scholar]
  • Zhang Y., Cruz J., Zhang S., Lou H.H., Benson T.J. (2013) Process simulation and optimization of methanol production coupled to tri-reforming process, Int. J. Hydrogen Energy 38, 31, 13617–13630. [Google Scholar]
  • Cloete S., Khan M.N., Amini S. (2019) Economic assessment of membrane-assisted autothermal reforming for cost effective hydrogen production with CO2 capture, Int. J. Hydrogen Energy 44, 7, 3492–3510. [Google Scholar]
  • Jahangiri A., Saidi M., Mohammadi A., Sedighi M. (2017) Characterization and catalytic reactivity of LaNi1-xMgxO3-δ perovskite oxides in reforming of methane with CO2 and O2, Int. J. Chem. React. Eng. 16, 4. [Google Scholar]
  • Özkara-Aydınoğlu Ş., Özensoy E., Aksoylu A.E. (2009) The effect of impregnation strategy on methane dry reforming activity of Ce promoted Pt/ZrO2, Int. J. Hydrogen Energy 34, 24, 9711–9722. [Google Scholar]
  • Wang Y., Yao L., Wang Y., Wang S., Zhao Q., Mao D., Hu C. (2018) Low-temperature catalytic CO2 dry reforming of methane on Ni-Si/ZrO2 catalyst, ACS Catal. 8, 7, 6495–6506. [Google Scholar]
  • Ma Q., Guo L., Fang Y., Li H., Zhang J., Zhao T.S., Yang G., Yoneyama Y., Tsubaki N. (2019) Combined methane dry reforming and methane partial oxidization for syngas production over high dispersion Ni based mesoporous catalyst, Fuel Process. Technol. 188, 98–104. [CrossRef] [Google Scholar]
  • Rameshan C., Li H., Anic K., Roiaz M., Pramhaas V., Rameshan R., Blume R., Hävecker M., Knudsen J., Knop-Gericke A. (2018) In situ NAP-XPS spectroscopy during methane dry reforming on ZrO2/Pt(1 1 1) inverse model catalyst, J. Phys.: Condens. Matter. 30, 264007. [CrossRef] [Google Scholar]
  • Song C. (2001) Tri-reforming: a new process for reducing CO2 emissions, Chem. Innov. 31, 1, 6–21. [Google Scholar]
  • Chein R.Y., Hsu W.H. (2018) Thermodynamic analysis of syngas production via tri-reforming of methane and carbon gasification using flue gas from coal-fired power plants, J. Cleaner Prod. 20, 242–258. [CrossRef] [Google Scholar]
  • Hassan A.M., Jim P., Valerie S., Jin L.W., Selvakannan P., Deepa D., Tibra M., Prasad V.V.D.N., Chanchal S., Bhargava S.K. (2015) Tri-reforming of methane for the production of syngas: Review on the process, catalysts and kinetic mechanism [online], in: Asia Pacific Confederation of Chemical Engineering Congress: APCChE, incorporating CHEMECA, Melbourne, Engineers Australia, pp. 128–136. [Google Scholar]
  • Bakhtyari A., Darvishi A., Rahimpour M.R. (2016) A heat exchanger reactor equipped with membranes to produce dimethyl ether from syngas and methyl formate and hydrogen from methanol, Int. J. Membrane Sci. Technol. 3, 64–84. [Google Scholar]
  • Nimkar S.C., Mewada R.K., Rosen M.A. (2017) Exergy and exergoeconomic analyses of thermally coupled reactors for methanol synthesis, Int. J. Hydrogen Energy 42, 47, 28113–28127. [Google Scholar]
  • Farsi M., Fekri Lari M., Rahimpour M.R. (2019) Development of a green process for DME production based on the methane tri-reforming, J. Taiwan Inst. Chem. Eng. 106, 9–19. doi: 10.1016/j.jtice.2019.10.001. [CrossRef] [Google Scholar]
  • Richardson J.T., Paripatyadar S.A. (1990) Carbon dioxide reforming of methane with supported rhodium, Appl. Catal. 61, 1, 293–309. [Google Scholar]
  • Choudhary V.R., Rajput A.M., Prabhakar B. (1994) NiO/CaO-catalyzed formation of syngas by coupled exothermic oxidative conversion and endothermic CO2 and steam reforming of methane, Angew. Chem. Int. Ed. 33, 20, 2104–2106. [CrossRef] [Google Scholar]
  • Al-Fatesh A.S., Naeem M.A., Fakeeha A.H., Abasaeed A.E. (2014) Role of La2O3 as promoter and support in Ni/γ-Al2O3 catalysts for dry reforming of methane, Chin. J. Chem. Eng. 22, 1, 28–37. [CrossRef] [Google Scholar]
  • Chen L., Gangadharan P., Lou H.H. (2018) Sustainability assessment of combined steam and dry reforming versus tri-reforming of methane for syngas production, Asia-Pac. J. Chem. Eng. 13, 2, e2168. [CrossRef] [Google Scholar]
  • Singha R.K., Shukla A., Yadav A., Adak S., Iqbal Z., Siddiqui N., Bal R. (2016) Energy efficient methane tri-reforming for synthesis gas production over highly coke resistant nanocrystalline Ni–ZrO2 catalyst, Appl. Energy 178, 15, 110–125. [Google Scholar]
  • Cho W., Song T., Mitsos A., McKinnon J.T., Ko G.H., Tolsma J.E., Denholm D., Park T. (2009) Optimal design and operation of a natural gas tri-reforming reactor for DME synthesis, Catal. Today. 139, 4, 261–267. [Google Scholar]
  • Tsipouriari Vaso A., Verykios Xenophon E. (2001) Kinetic study of the catalytic reforming of methane with carbon dioxide to synthesis gas over Ni/La2O3 catalyst, Catal. Today. 64, 1–2, 83–90. [Google Scholar]
  • Nandini A., Pant K.K., Dhingra S.C. (2006) Kinetic study of the catalytic carbon dioxide reforming of methane to synthesis gas over Ni–K/CeO2–Al2O3 catalyst, Appl. Catal. A. 308, 10, 119–127. [CrossRef] [Google Scholar]
  • Richardson J.T., Paripatyadar S.A. (1990) Carbon dioxide reforming of methane with supported rhodium, Appl. Catal. 61, 1, 293–309. [Google Scholar]
  • Minh D.P., Siang T.J., Vo D.V.N., Phan T.S., Ridart C., Nzihou A., Grouset D. (2018) Hydrogen production from biogas reforming: An overview of steam reforming, dry reforming, dual reforming, and tri-reforming of methane, in: Hydrogen supply chains, Academic Press, Cambridge, MA, pp. 111–166. [CrossRef] [Google Scholar]
  • Xu J., Froment G.F. (1989) Methane steam reforming, methanation and water-gas shift: I. Intrinsic kinetics, AlChE J. 35, 1, 88–96. [CrossRef] [Google Scholar]
  • Xiu G.H., Li P., Rodrigues A.E. (2002) Sorption-enhanced reaction process with reactive regeneration, Chem. Eng. Sci. 57, 18, 3893–3908. [Google Scholar]
  • Trimm D.L., Lam C.W. (1980) The combustion of methane on platinum – alumina fibre catalysts – I: Kinetics and mechanism, Chem. Eng. Sci. 35, 6, 1405–1413. [Google Scholar]
  • De Smet C., De Croon M., Berger R., Marin G., Schouten J. (2001) Design of adiabatic fixed-bed reactors for the partial oxidation of methane to synthesis gas. Application to production of methanol and hydrogen-for-fuel-cells, Chem. Eng. Sci. 56, 16, 4849–4861. [Google Scholar]
  • Gosiewski K., Bartmann U., Moszczynski M., Mleczko L. (1999) Efect of the intraparticle mass transport limitations on temperature profiles and catalytic performance of the reverse-flow reactor for the partial oxidation of methane to synthesis gas, Chem. Eng. Sci. 54, 20, 4589–4602. [Google Scholar]
  • Graaf G.H., Scholtens H., Stamhuis E.J., Beenackers A.A.C.M. (1990) Intra-particle diffusion limitations in low-pressure methanol synthesis, Chem. Eng. Sci. 45, 4, 773–783. [Google Scholar]
  • Barbieri G., Di Maio F.P. (1997) Simulation of the methane steam reforming process in a catalytic Pd-membrane reactor, Ind. Eng. Chem. Res. 6, 2121–2127. [Google Scholar]
  • Van Ness H., Smith J., Abbott M. (2001) Introduction to chemical engineering thermodynamics, McGraw-Hill, Crawfordsville. [Google Scholar]
  • Cussler E.L. (1997) Diffusion: Mass transfer in fluid systems, Cambridge University Press, Cambridge. [Google Scholar]
  • Reid R.C., Sherwood T.K., Prausnitz J. (1977) The properties of gases and liquids, 3rd edn., McGraw-Hill, New York. [Google Scholar]
  • Smith J.M. (1980) Chemical engineering kinetics, McGraw-Hill, New York. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.