Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 74, 2019
Article Number 87
Number of page(s) 12
DOI https://doi.org/10.2516/ogst/2019060
Published online 16 December 2019
  • Babu D.K., Odeh A.S. (1988) Productivity of a horizontal well appendices A and B, SPE Annual Technical Conference and Exhibition, 2–5 October, Houston, Texas. [Google Scholar]
  • Babu D.K., Odeh A.S., Al-Khalifa A.J., McCann R.C. (1991) Numerical simulation of horizontal wells, Middle East Oil Show, 16-19 November, Bahrain. [Google Scholar]
  • Barenblatt G.I., Entov V.M., Ryzhik V.M. (1989) Theory of fluid flows through natural rocks, Kluwer, Dordrecht. [Google Scholar]
  • Bedrikovetsky P. (2013) Mathematical theory of oil and gas recovery: with applications to ex-USSR oil and gas fields, Vol. 4, Springer Science & Business Media, Dordrecht. [Google Scholar]
  • Chen Z., Zhang Y. (2009) Well flow methods for various numerical methods, Int. J. Numer. Anal. Mod. 6, 3, 375–388. [Google Scholar]
  • Ding D.Y. (1995) Scaling-up in the vicinity of wells in heterogeneous field, 13th SPE Symposium on Reservoir Simulation, 12–15 February, San Antonio, TX. [Google Scholar]
  • Ding D.Y. (2004) Near-well upscaling for reservoir simulations, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 59, 2, 157–165. [CrossRef] [Google Scholar]
  • Ding D.Y. (2009) Modeling formation damage for flow simulations at reservoir scale. 8th European Formation Damage Conference, 27–29 May, Scheveningen, The Netherlands. [Google Scholar]
  • Ding D.Y. (2011) Coupled simulation of near-wellbore and reservoir models, J. Petrol. Sci. En. 76, 1–2, 21–36. [CrossRef] [Google Scholar]
  • Ding D.Y., Jeannin L. (2004) New numerical schemes for near-well modeling using flexible grid, SPE J. 9, 1, 109–121. [CrossRef] [Google Scholar]
  • Ding D.Y., Renard G. (1994) A new representation of wells in numerical reservoir simulation, SPE Reserv. Eng. 9, 2, 140–144. [CrossRef] [Google Scholar]
  • Ding D.Y., Renard G., Weill L. (1998) Representation of wells in numerical reservoir simulation, SPE Reserv. Eval. Eng. 1, 1, 18–23. [CrossRef] [Google Scholar]
  • Ding Y.X., Shi A.F., Luo H.S., Wang X.H. (2016) Adaptive mesh refinement for non-isothermal multiphase flows in heterogeneous porous media comprising different rock types with tensor permeability, Numer. Heat Transf. A Appl. 69, 1, 31–50. [CrossRef] [Google Scholar]
  • Hadley G.F., Handy L.L. (1956) A theoretical and experimental study of the steady state capillary end effect. Fall Meeting of the Petroleum Branch of AIME, 14–17 October, Los Angeles, CA. [Google Scholar]
  • Holditch S.A. (1979) Factors affecting water blocking and gas flow from hydraulically fractured gas wells, J. Pet. Technol. 31, 12, 1515–1524. [CrossRef] [Google Scholar]
  • Huang D.D., Honarpour M.M. (1998) Capillary end effects in coreflood calculations, J. Petrol. Sci. En. 19, 1–2, 103–117. [CrossRef] [Google Scholar]
  • Naik S., You Z., Bedrikovetsky P. (2018) Productivity index enhancement by wettability alteration in two-phase compressible flows, J. Nat. Gas Sci. Eng. 50, 101–114. [Google Scholar]
  • Peaceman D.W. (1978) Interpretation of well-block pressures in numerical reservoir simulation (includes associated paper 6988), Soc. Pet. Eng. J. 18, 3, 183–194. [CrossRef] [Google Scholar]
  • Peaceman D.W. (1983) Interpretation of well-block pressures in numerical reservoir simulation with nonsquare grid blocks and anisotropic permeability, Soc. Pet. Eng. J. 23, 3, 531–543. [CrossRef] [Google Scholar]
  • Richardson J.G., Kerver J.K., Hafford J.A., Osoba J.S. (1952) Laboratory determination of relative permeability, J. Pet. Technol. 4, 8, 187–196. [CrossRef] [Google Scholar]
  • Settari A., Aziz K. (1974) A computer model for two-phase coning simulation, Soc. Pet. Eng. J. 14, 3, 221–236. [CrossRef] [Google Scholar]
  • Shiralkar G.S. (1989) Calculation of flowing well pressures in reservoir simulation using nine-point differencing, J. Can. Petrol. Technol. 28, 6, 73–82. [CrossRef] [Google Scholar]
  • Su H.J. (1995) Modeling of off-center wells in reservoir simulation, SPE Reserv. Eng. 10, 1, 47–51. [CrossRef] [Google Scholar]
  • Virnovsky G.A., Skjaeveland S.M., Surdal J., Ingsoy P. (1995) Steady-state relative permeability measurements corrected for capillary effects. SPE Annual Technical Conference and Exhibition, 22–25 October, Dallas, TX. [Google Scholar]
  • Wang X.H., Quintard M., Darche G. (2006) Adaptive mesh refinement for one-dimensional three-phase flow with phase change in porous media, Numer. Heat Transf. B Fundam. 50, 3, 231–268. [CrossRef] [Google Scholar]
  • Williamson A.S., Chappelear J.E. (1981) Representing wells in numerical reservoir simulation: part 1-Theory, Soc. Pet. Eng. J. 21, 3, 323–338. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.