Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 74, 2019
Article Number 73
Number of page(s) 18
DOI https://doi.org/10.2516/ogst/2019045
Published online 18 September 2019
  • Abdollahzadeh A., Reynolds A., Christie M.A., Corne D. (2012) A parallel GA-EDA hybrid algorithm for history-matching (SPE-153750). SPE Oil and Gas India Conference and Exhibition, 28–30 March, Mumbai, India. [Google Scholar]
  • Abdollahzadeh A., Christie M., Corne D., Davies B., Elliott M. (2013) An adaptive evolutionary algorithm for history-matching (SPE-164824). EAGE Annual Conference & Exhibition Incorporating SPE Europec, 10–13 June, London, United Kingdom. [Google Scholar]
  • Avansi G.D., Schiozer D.J. (2015) UNISIM-I: Synthetic model for reservoir development and management applications, Int. J. Model. Simul. Petrol. Ind. 9, 1, 21–30. [Google Scholar]
  • Avansi G.D., Maschio C., Schiozer D.J. (2016) Simultaneous history-matching approach by use of reservoir-characterization and reservoir-simulation studies (SPE-179740-PA), SPE Reserv. Evalu. Eng. 19, 4, 69–712. [Google Scholar]
  • Bennett F., Graf T. (2002) Use of geostatistical modeling and automatic history matching to estimate production forecast uncertainty – A case study (SPE 74389). International Petroleum Conference and Exhibition in Mexico, 10–12 February, Villahermosa, Mexico. [Google Scholar]
  • Chakra N.C.C., Saraf D.N. (2016) History matching of petroleum reservoirs employing adaptive genetic algorithm, J. Petrol. Explor. Prod. Technol. 6, 4, 653–674. [CrossRef] [Google Scholar]
  • Chen P.H., Shahandashti S.M. (2009) Hybrid of genetic algorithm and simulated annealing for multiple project scheduling with multiple resource constraints, Autom. Constr. 18, 434–443. [CrossRef] [Google Scholar]
  • Chen C., Jin L., Gao G., Weber D., Vink J.C., Hohl D., Alpak F.O., Pirmez C. (2012) Assisted history matching using three derivative-free optimization algorithms (SPE-154112). SPE Europec/EAGE Annual Conference, 4–7 June, Copenhagen, Denmark. [Google Scholar]
  • CMG – Computer Modelling Group Ltd. (2012) IMEX User’s Guide, Calgary, Canada. [Google Scholar]
  • Davolio A., Schiozer D.J. (2018) Probabilistic seismic history matching using binary images, J. Geophys. Eng. 15, 261–274. [CrossRef] [Google Scholar]
  • Floris F.J.T., Bush M.D., Cuypers M., Roggero F., Syversveen A.R. (2001) Methods for quantifying the uncertainty of production forecasts – a comparative study, Petrol. Geosci. 7, S87–S96. [CrossRef] [Google Scholar]
  • Gautier Y., Noetinger B. (2004) Geostatistical parameters estimation using well test data, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 59, 2, 167–183. [CrossRef] [Google Scholar]
  • Guérillot D., Roggero F. (1995) Matching the future for the evaluation of extreme reservoir development scenarios. 8th European Symposium on Improved Oil Recovery, 15–17 May, Vienna, Austria. [Google Scholar]
  • Holland J.H. (1975) Adaptation in natural and artificial system, The University of Michigan Press, Ann Arbor, MI. [Google Scholar]
  • Hu L.Y., Blanc G., Noetinger B. (2001) Gradual deformation and iterative calibration of sequential stochastic simulations, Math. Geol. 33, 4, 475–489. [Google Scholar]
  • Junghans L., Darde N. (2015) Hybrid single objective genetic algorithm coupled with the simulated annealing optimization method for building optimization, Energy Build. 86, 651–662. [Google Scholar]
  • Kirkpatrick S., Gelatt C.D. Jr, Vecchi M.P. (1983) Optimization by simulated annealing, Science 220, 671–680. [Google Scholar]
  • Li X.G., Wei X. (2008) An improved genetic algorithm-simulated annealing hybrid algorithm for the optimization of multiple reservoirs, Water Res. Manag. 22, 8, 1031–1049. [CrossRef] [Google Scholar]
  • Long J., van den Hoek P.J., Alpak F.O., Pirmez C., Fehintola T., Tendo F., Olaniyan E.E. (2012) A comparison of stochastic data-integration algorithms for the joint history matching of production and time-lapse-seismic data (SPE-146418), SPE Reserv. Evalu. Eng. 15, 4, 498–512. [CrossRef] [Google Scholar]
  • Maschio C., Vidal A.C., Schiozer D.J. (2008) A framework to integrate history matching and geostatistical modeling using genetic algorithm and direct search methods, J. Petrol. Sci. Eng. 63, 34–42. [CrossRef] [Google Scholar]
  • Maschio C., Davolio A., Correia M.G., Schiozer D.J. (2015) A new framework for geostatistics-based history matching using genetic algorithm with adaptive bounds, J. Pet. Sci. Eng. 127, 387–397. [Google Scholar]
  • Maschio C., Schiozer D.J. (2016) Probabilistic history matching using discrete Latin Hypercube sampling and nonparametric density estimation, J. Petrol. Sci. Eng. 147, 98–115. [CrossRef] [Google Scholar]
  • Maschio C., Schiozer D.J. (2018) A new methodology for history matching combining iterative discrete Latin Hypercube with multi-start simulated annealing, J. Petrol. Sci. Eng. 169, 560–577. [CrossRef] [Google Scholar]
  • Oliveira G.S., Schiozer D.J., Maschio C. (2017) History matching by integrating regional multi-property image perturbation methods with a multivariate sensitivity analysis, J. Petrol. Sci. Eng. 153, 111–122. [CrossRef] [Google Scholar]
  • Ouenes A., Bhagavan S., Bunge P.H., Travis B.J. (1994) Application of simulated annealing and other global optimization methods to reservoir description: Myths and realities (SPE-28415). SPE Annual Technical Conference and Exhibition, 25–28 September, New Orleans, Louisiana. [Google Scholar]
  • Roggero F., Guérillot D. (1996) Gradient method and Bayesian formalism application to petrophysical parameter characterization. 5th European Conference on the Mathematics of Oil Recovery, 3–6 September, Leoben, Austria. [Google Scholar]
  • Romero C.E., Carter J.N., Zimmerman R.W., Gringarten A.C. (2000) Improved reservoir characterization through evolutionary computation (SPE-62942). Annual Technical Conference and Exhibition, 1–4 October, Dallas, Texas. [Google Scholar]
  • Romero C.E., Carter J.N. (2001) Using genetic algorithms for reservoir characterization, J. Petrol. Sci. Eng. 31, 2–4, 113–123. [CrossRef] [Google Scholar]
  • Sanghyun L., Stephen K.D. (2018) Optimizing automatic history matching for field application using genetic algorithm and particle swarm optimization (OTC-28401-MS). Offshore Technology Conference Asia, 20–23 March, Kuala Lumpur, Malaysia. [Google Scholar]
  • Sayyafzadeh M., Haghighi M., Carter J.N. (2012) Regularization in history matching using multi-objective genetic algorithm and Bayesian framework (SPE-154544). SPE Europec/EAGE Annual Conference, 4–7 June, Copenhagen, Denmark. [Google Scholar]
  • Schulze-Riegert R.W., Axmann J.K., Haase O., Rian D.T., You Y.L. (2002) Evolutionary algorithms applied to history matching of complex reservoirs (SPE-77301), SPE Reserv. Evalu. Eng. 5, 2, 163–173. [CrossRef] [Google Scholar]
  • Schulze-Riegert R.W., Haase O. (2003) Combined global and local optimization techniques applied to history matching (SPE-79668). Reservoir Simulation Symposium, 3–5 February, Houston, Texas. [Google Scholar]
  • Sultan A.J., Ouenes A., Weiss W.W. (1994) Automatic history matching for an integrated reservoir description and improving oil recovery (SPE-27712). Permian Basin Oil and Gas Recovery Conference, 16–18 March, Midland, Texas. [Google Scholar]
  • UNISIM (2015) Research group on Reservoir Simulation and Management. UNISIM-I-H: Case Study for History Matching. https://www.unisim.cepetro.unicamp.br/benchmarks/en/unisim-i/unisim-i-h. [Google Scholar]
  • Xavier C.R., dos Santos E.P., da Fonseca Vieira V., dos Santos R.W. (2013) Genetic algorithm for the history matching problem, Procedia Comput. Sci. 18, 946–955. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.