Dossier LES4ICE’18 : LES for Internal Combustion Engine Flows Conference
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 74, 2019
Dossier LES4ICE’18 : LES for Internal Combustion Engine Flows Conference
Article Number 51
Number of page(s) 21
DOI https://doi.org/10.2516/ogst/2019029
Published online 28 May 2019
  • Chang J., Güralp O., Filipi Z., Assanis D.N., Kuo T.-W., Najt P., Rask R. (2004) New heat transfer correlation for an HCCI engine derived from measurements of instantaneous surface heat flux. SAE paper 2004-01-2996. [Google Scholar]
  • Reuss D.L., Kuo T.W., Silvas G., Natarajan V., Sick V. (2008) Experimental metrics for identifying origins of combustion variability during spark-assisted compression ignition, Int. J. Engine Res. 9, 5, 409–434. [CrossRef] [Google Scholar]
  • Ezekoye O., Greif R., Sawyer R.F. (1992) Increased surface temperature effects on wall heat transfer during unsteady flame quenching, Symp. (International) Combust. 24, 1, 1465–1472. [CrossRef] [Google Scholar]
  • Harigaya Y., Toda F., Ohyagi S., Tsuji H. (1989) Surface temperature and wall heat flux in a spark-ignition engine under knocking and non-knocking conditions. SAE paper 891795. [Google Scholar]
  • Myers J.P., Alkidas A.C. (1978) Effects of combustion-chamber surface temperature on the exhaust emissions of a single-cylinder spark-ignition engine. SAE paper 780642. [Google Scholar]
  • Hall M.J., Bracco F.V. (1986) Cycle-resolved velocity and turbulence measurements near the cylinder wall of a firing S.I. engine. SAE paper 861530. [Google Scholar]
  • Foster D.E., Witze P.O. (1987) Velocity measurements in the wall boundary layer of a spark-ignited research engine. SAE paper 872105. [Google Scholar]
  • Pierce P.H., Ghandhi J.B., Martin J.K. (1992) Near-wall velocity characteristics in valved and ported motored engines. SAE paper 920152. [Google Scholar]
  • Greene M. (2016) Momentum Near-Wall Region Characterization in a Reciprocating Internal-Combustion Engine, PhD Thesis, Mech Eng, University of Michigan, Ann Arbor, MI, 127 p. [Google Scholar]
  • Alharbi A.Y., Sick V. (2010) Investigation of boundary layers in internal combustion engines using a hybrid algorithm of high speed micro-PIV and PTV, Exp Fluids 49, 4, 949–959. [Google Scholar]
  • Jainski C., Lu L., Dreizler A., Sick V. (2013) High-speed micro particle image velocimetry studies of boundary-layer flows in a direct-injection engine, Int. J. Engine Res. 14, 3, 247–259. [CrossRef] [Google Scholar]
  • Lyford-Pike E., Heywood J.B. (1984) Thermal boundary layer thickness in the cylinder of a spark-ignition engine, Int. J. Heat Mass Transfer 27, 10, 1873–1878. [CrossRef] [Google Scholar]
  • Lucht R.P., Maris M.A. (1987) CARS measurements of temperature profiles near a wall in an internal combustion engine. SAE paper 870459. [Google Scholar]
  • Schlichting H. (1979) Boundary-layer theory, 7th edn., McGraw-Hill, New York, NY. [Google Scholar]
  • Werner H., Wengle H. (1993) Large-eddy simulation of turbulent flow over and around a cube in a plate channel, Turbul Shear Flows 8, 155–168. [CrossRef] [Google Scholar]
  • Ma P.C., Ewan T., Jainski C., Lu L., Dreizler A., Sick V., Ihme M. (2016) Development and analysis of wall models for internal combustion engine simulations using high-speed micro-PIV measurements, Flow Turbul Combust 98, 1, 283–309. [Google Scholar]
  • Ma P.C., Greene M., Sick V., Ihme M. (2017) Non-equilibrium wall-modeling for internal combustion engine simulations with wall heat transfer, Int. J. Engine Res. 18, 1–2, 15–25. [CrossRef] [Google Scholar]
  • Angelberger C., Poinsot T., Delhay B. (1997) Improving near-wall combustion and wall heat transfer modeling in SI engine computations. SAE paper 972881. [Google Scholar]
  • Han Z., Reitz R.D. (1997) A temperature wall function formulation for variable-density turbulent flows with application to engine convective heat transfer modeling, Int. J. Heat Mass Transfer 40, 3, 613–625. [CrossRef] [Google Scholar]
  • Keum S., Park H., Babajimopoulos A., Assanis D.N., Jung D. (2011) Modelling of heat transfer in internal combustion engines with variable density effect, Int. J. Engine Res. 12, 6, 513–526. [CrossRef] [Google Scholar]
  • Berni F., Cicalese G., Fontanesi S. (2017) A modified thermal wall function for the estimation of gas-to-wall heat fluxes in CFD in-cylinder simulations of high performance spark-ignition engines, Appl. Thermal Eng. 115, 1045–1062. [CrossRef] [Google Scholar]
  • Šarić S., Basara B., Žunič Z. (2017) Advanced near-wall modeling for engine heat transfer, Int. J. Heat Fluid Flow 63, 205–211. [Google Scholar]
  • Saric S., Basara B. (2015) A hybrid wall heat transfer model for IC engine simulations, SAE Int. J. Engines 8, 411–418. [CrossRef] [Google Scholar]
  • Decan G., Broekaert S., Lucchini T., D’Errico G., Vierendeels J., Verhelst S. (2017) Evaluation of wall heat flux models for full cycle CFD simulation of internal combustion engines under motoring operation. SAE paper 2017-24-0032. [Google Scholar]
  • Alkidas A.C., Myers J.P. (1982) Transient heat-flux measurements in the combustion chamber of a spark-ignition engine, J. Heat Transfer 104, 1, 62–67. [Google Scholar]
  • Nijeweme D.J.O., Kok J.B.W., Stone C.R., Wyszynski L. (2001) Unsteady in-cylinder heat transfer in a spark ignition engine: experiments and modelling, Proc. Inst. Mech. Eng. Part D: J. Automobile Eng. 215, 6, 747–760. [CrossRef] [Google Scholar]
  • Xin J., Shih S., Itano E., Maeda Y. (2003) Integration of 3D combustion simulations and conjugate heat transfer analysis to quantitatively evaluate component temperatures. SAE paper 2003-01-3128. [Google Scholar]
  • Li Y., Kong S.-C. (2011) Coupling conjugate heat transfer with in-cylinder combustion modeling for engine simulation, Int. J. Heat Mass Transfer 54, 11, 2467–2478. [CrossRef] [Google Scholar]
  • Fontanesi S., Cicalese G., D’Adamo A., Pivetti G. (2011) Validation of a CFD methodology for the analysis of conjugate heat transfer in a high performance SI engine. SAE paper 2011-24-0132. [Google Scholar]
  • Cicalese G., Berni F., Fontanesi S., D’Adamo A., Andreoli E. (2017) A comprehensive CFD-cht methodology for the characterization of a diesel engine: From the heat transfer prediction to the thermal field evaluation. SAE paper 2017-01-2196. [Google Scholar]
  • Iqbal O., Arora K., Sanka M. (2014) Thermal map of an IC engine via conjugate heat transfer: validation and test data correlation, SAE 2014-01-1180 7, 1, 366–374. [Google Scholar]
  • Wu M., Pei Y., Qin J., Li X., Zhou J., Zhan Z.S., Guo Q.-Y., Liu B., Hu T.G. (2017) Study on methods of coupling numerical simulation of conjugate heat transfer and in-cylinder combustion process in GDI engine. SAE paper 2017-01-0576. [Google Scholar]
  • Leguille M., Ravet F., Le Moine J., Pomraning E., Richards K., Senecal P.K. (2017) Coupled fluid-solid simulation for the prediction of gas-exposed surface temperature distribution in a SI engine. SAE paper 2017-01-0669. [Google Scholar]
  • Urip E., Liew K.H., Yang S.L. (2007) Modeling IC engine conjugate heat transfer using the KIVA code, Numerical Heat Transfer, Part A: Appl. 52, 1, 1–23. [CrossRef] [Google Scholar]
  • Misdariis A., Vermorel O., Poinsot T. (2015) LES of knocking in engines using dual heat transfer and two-step reduced schemes, Combust. Flame 162, 11, 4304–4312. [Google Scholar]
  • Schiffmann P., Reuss D.L., Sick V. (2017) TCC collection. Available https://deepblue.lib.umich.edu/data/collections/8k71nh59c. [Google Scholar]
  • Schiffmann P., Gupta S., Reuss D., Sick V., Yang X., Kuo T.W. (2015) TCC-III engine benchmark for large-eddy simulation of IC engine flows, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 71, 1, 3. [CrossRef] [Google Scholar]
  • Richards K., Senecal P.K., Pomraning E. (2018) CONVERGE v24 Manual, Convergent Science, Inc., Madison, WI. [Google Scholar]
  • Pomraning E., Rutland C.J. (2002) Dynamic one-equation nonviscosity large-eddy simulation model, AIAA J. 40, 4, 689–701. [Google Scholar]
  • Kuo T.W., Yang X., Gopalakrishnan V., Chen Z. (2014) Large eddy simulation for IC engine flows, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 69, 1, 61–81. [CrossRef] [Google Scholar]
  • Yakhot V., Orszag S.A. (1986) Renormalization group analysis of turbulence. I. Basic Theory, J. Sci. Comput. 1, 1, 3–51. [Google Scholar]
  • Enaux B., Granet V., Vermorel O., Lacour C., Pera C., Angelberger C., Poinsot T. (2011) LES study of cycle-to-cycle variations in a spark ignition engine, Proc. Combust. Inst. 33, 2, 3115–3122. [Google Scholar]
  • Granet V., Vermorel O., Lacour C., Enaux B., Dugu V., Poinsot T. (2012) Large-eddy simulation and experimental study of cycle-to-cycle variations of stable and unstable operating points in a spark ignition engine, Combust. Flame 159, 4, 1562–1575. [Google Scholar]
  • Tatschl R., Bogensperger M., Pavlovic Z., Priesching P., Schuemie H., Vitek O., Macek J. (2013) LES simulation of flame propagation in a direct-injection SI-engine to identify the causes of cycle-to-cycle combustion variations SAE paper 2013-01-1084. [Google Scholar]
  • Pope S.B. (2004) Ten questions concerning the large-eddy simulation of turbulent flows, New J. Phys. 6, 1, 35–35. [Google Scholar]
  • di Mare F., Knappstein R., Baumann M. (2014) Application of LES-quality criteria to internal combustion engine flows, Comput. Fluids 89, 200–213. [Google Scholar]
  • Schiffmann P. (2016) Root causes of cycle-to-cycle combustion variations in spark ignited engines, PhD Thesis, Mech Eng, University of Michigan, Ann Arbor, MI, 221 p. [Google Scholar]
  • Liu K., Haworth D.C. (2011) Development and assessment of POD for analysis of turbulent flow in piston engines. [Google Scholar]
  • Chen H., Zhuang H., Reuss D.L., Sick V. (2018) Influence of early and late fuel injection on air flow structure and kinetic energy in an optical SIDI engine. SAE paper 2018-01-0205. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.