Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 74, 2019
Article Number 16
Number of page(s) 7
DOI https://doi.org/10.2516/ogst/2018095
Published online 27 February 2019
  • Andrade D., Neto M., Negrao C. (2018) Non-monotonic response of waxy crude oil gel strength to cooling rate, Rheol. Acta 57, 673–680. [CrossRef] [Google Scholar]
  • Avrami M. (1939) Kinetics of phase change. I. General theory, J. Chem. Phys. 7, 12, 1103–1112. [NASA ADS] [CrossRef] [Google Scholar]
  • Cawkwell M.G., Charles M.E. (1989) Characterization of Canadian arctic thixotropic gelled crude oils utilizing an eight-parameter model, J. Pipelines 7, 251–264. [Google Scholar]
  • Cazaux G., Barre L., Brucy F. (1998) Waxy crude cold start: assessment through gel structural properties, Society of Petroleum Engineers. doi: 10.2118/49213-MS. [Google Scholar]
  • Chang C., Boger D.V., Nguyen Q.D. (2000) Influence of thermal history on the waxy structure of statically cooled waxy crude oil, SPE J. 5, 2, 148–157. [CrossRef] [Google Scholar]
  • Coutinho J.A.P., Lopes da Silva J.A., Ferreira A., Suares M.R., Daridon J.-L. (2003) Evidence for the aging of wax deposits in crude oils by Ostwald Ripening, Pet. Sci. Technol. 21, 3&4, 381–391. [CrossRef] [Google Scholar]
  • Coutinho J.A.P., Ruffier-Meray V. (1999) The use of Differential Scanning Calorimetry in studies of wax deposition: measuring the solid formation and binary solid-liquid equilibrium phase diagrams, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 54, 5, 641–648. [CrossRef] [Google Scholar]
  • Creek J.L., Lund H.J., Brill J.P., Volk M. (1999) Wax deposition in single phase flow, Fluid Phase Equilib. 158, 801–811. [CrossRef] [Google Scholar]
  • Dalmazzone C., Noïk C., Clausse D. (2009) Application of DSC for emulsified system characterization, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 64, 5, 543–555. [CrossRef] [Google Scholar]
  • Hénaut I., Vincké O., Brucy F. (1999) Waxy crude oil restart: mechanical properties of gelled oils, Society of Petroleum Engineers. doi: 10.2118/56771-MS. [Google Scholar]
  • Hollander F.F.A., Stasse O., van Suchtelen J., van Enckevort W.J.P. (2001) Recrystallization phenomena of solution grown paraffin dendrites, J. Cryst. Growth 233, 4, 868–880. [CrossRef] [Google Scholar]
  • Hsu J.J.C., Santamaria M.M., Brubaker J.P. (1994) Wax deposition of waxy live crudes under turbulent flow conditions, Society of Petroleum Engineers. doi: 10.2118/28480-MS. [Google Scholar]
  • Li C., Yang Q., Li M. (2009) Effects of stress and oscillatory frequency on the structural properties of Daqing gelled crude oil at different temperatures, J. Pet. Sci. Eng. 65, 167–170. [CrossRef] [Google Scholar]
  • Lin M., Li C., Yang F., Ma Y. (2011) Isothermal structure development of Qinshai waxy crude oil after static and dynamic conditions, J. Pet. Sci. Eng. 77, 351–358. [CrossRef] [Google Scholar]
  • Lopes da Silva J.A., Coutinho A.P. (2004) Dynamic rheological analysis of the gelation behavior of waxy crude oils, Rheol. Acta 43, 433–441. [CrossRef] [Google Scholar]
  • Lopes da Silva J.A., Coutinho A.P. (2007) Analysis of the isothermal structure development in waxy crude oils under quiescent conditions, Energy Fuels 21, 3612–3617. [CrossRef] [Google Scholar]
  • Lorge O., Djabourov M., Brucy F. (1997) Cristallisation et gélification des bruts paraffiniques dans les conditions d'écoulement, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 52, 2, 235–239. [Google Scholar]
  • Luthi I.F. (2013) Waxy crude oil characterization and experimental study of the restart of a line blocked with gelled waxy crude, SPE 167625, Annual Technical Conference and Exhibition, 30 September–2 October, New Orleans, Louisiana, USA. [Google Scholar]
  • Paso K. (2014) Comprehensive treatise on shut-in and restart of waxy oil pipelines, J. Dispers. Sci. Technol. 35, 1060–1085. [CrossRef] [Google Scholar]
  • Paso K., Senra M., Yi Y., Sastry A.M., Fogler H.S. (2005) Paraffin polydispersity facilitates mechanical gelation, Ind. Eng. Chem. Res. 44, 7242–7254. [CrossRef] [Google Scholar]
  • Quan Q., Gong J., Wand W., Gao G. (2015) Study on the aging and critical number of wax deposition with temperature for crude oils, J. Pet. Sci. Eng. 130, 1–5. [CrossRef] [Google Scholar]
  • Ronningsen H.P. (1992) Rheological behaviour of gelled, waxy North Sea crude oils, J. Pet. Sci. Eng. 7, 177–213. [CrossRef] [Google Scholar]
  • Russell R.J., Chapman E.D. (1971) The pumping of 85 F pour point Assam (Nahorkatiya) crude oil at 65 F, J. Inst. Pet. 57, 554, 117–128. [Google Scholar]
  • Venkatesan R., Nagarajan N.R., Paso K., Yi Y.-B., Sastry A.M., Fogler H.S. (2005) The strength of paraffin gels formed under static and flow conditions, Chem. Eng. Sci. 60, 3587–3598. [CrossRef] [Google Scholar]
  • Vinay G., Wachs A., Agassant J.F. (2005) Numerical simulation of non-isothermal viscoplastic waxy crude oil flows, J. Non-Newton. Fluid Mech. 128, 144–162. [CrossRef] [Google Scholar]
  • Vinay G., Wachs A., Agassant J.F. (2006) Numerical simulation of weakly compressible Bingham flows: the restart of pipeline flows of waxy crude oils, J. Non-Newton. Fluid Mech. 136, 93–105. [CrossRef] [Google Scholar]
  • Wachs A., Vinay G., Frigaard I. (2009) A 1.5D numerical model for the start up of weakly compressible flow of a viscoplastic and thixotropic fluid in pipelines, J. Non-Newton. Fluid Mech. 159, 81–94. [CrossRef] [Google Scholar]
  • Yang F., Paso K., Norrman J., Li C., Oschmann H., Sjöblom J. (2015) Hydrophilic nanoparticles facilitate wax inhibition, Energy Fuels 29, 1368–1374. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.