Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 74, 2019
Article Number 5
Number of page(s) 16
DOI https://doi.org/10.2516/ogst/2018080
Published online 10 January 2019
  • Abrams A., (1975) The influence of fluid viscosity, interfacial tension, and flow velocity on residual oil saturation left by waterflood, SPE J. 15, 5, 437–447. [Google Scholar]
  • Ahmed T. (2006) Reservoir engineering handbook, Gulf Professional Publishing. [Google Scholar]
  • Al-Anssari S., Arif M., Wang S., Barifcani A., Lebedev M., Iglauer S. (2018) Wettability of nanofluid-modified oil-wet calcite at reservoir conditions Fuel 211, 405–414. [CrossRef] [Google Scholar]
  • Al-Anssari S., Barifcani A., Wang S., Maxim L., Iglauer S. (2016) Wettability alteration of oil-wet carbonate by silica nanofluid, J Colloid Interface Sci. 461, 435–442. [Google Scholar]
  • Anderson W. (1986) Wettability literature survey-part 2: Wettability measurement, J. Petrol. Technol. 38, 11, 1,246–1,62. [CrossRef] [Google Scholar]
  • Archie G.E. (1952) Classification of carbonate reservoir rocks and petrophysical considerations, AAPG Bull. 36, 2, 278–298. [Google Scholar]
  • Baez J., Ruiz M.P., Faria J., Harwell J.H., Shiau B., Resasco D.E. (eds) (2012) Stabilization of interfacially-active-nanohybrids/polymer suspensions and transport through porous media, Society of Petroleum Engineers. [Google Scholar]
  • Buckley J., Liu Y., Monsterleet S. (1998) Mechanisms of wetting alteration by crude oils, SPE J. 3, 1, 54–61. [CrossRef] [Google Scholar]
  • Cuiec L.E. (1990) Evaluation of reservoir wettability and its effect on oil recovery, in: Morrow N.R. (ed), Interfacial phenomena in petroleum recovery, Marcel Dekker, New York, pp. 319–370 [Google Scholar]
  • El-Amin M.F., Salama A., Sun S. (eds) (2012) Modeling and simulation of nanoparticle transport in a two-phase flow in porous media, SPE International Oilfield Nanotechnology Conference and Exhibition, Society of Petroleum Engineers. [Google Scholar]
  • El-Amin M.F., Sun S., Salama A. (eds) (2013) Enhanced oil recovery by nanoparticles injection: modeling and simulation, SPE Middle East Oil and Gas Show and Conference, Society of Petroleum Engineers. [Google Scholar]
  • Ghosn R., Mihelic F., Hochepied J.F., Dalmazzone D. (2017) Silica nanoparticles for the stabilization of W/O emulsions at HTHP conditions for unconventional reserves drilling operations, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 72, 21. [CrossRef] [Google Scholar]
  • Gruesbeck C., Collins R. (1982) Entrainment and deposition of fine particles in porous media, SPE J. 22, 6, 847–856. [Google Scholar]
  • Hendraningrat L., Li S., Torsæter O. (2013) A coreflood investigation of nanofluid enhanced oil recovery, J. Petrol. Sci. Eng. 111, 128–138. [CrossRef] [Google Scholar]
  • Hendraningrat L., Shidong L. (eds) (2012) A glass micromodel experimental study of hydrophilic nanoparticles retention for EOR project, SPE Russian Oil and Gas Exploration and Production Technical Conference and Exhibition, Society of Petroleum Engineers. [Google Scholar]
  • Høgnesen E.J., Standnes D.C., Austad T. (2004) Scaling spontaneous imbibition of aqueous surfactant solution into preferential oil-wet carbonates, Energy Fuels 18, 6, 1665–1675. [Google Scholar]
  • Ju B., Dai S., Luan Z., Zhu T., Su X., Qiu X. (eds) (2002) A study of wettability and permeability change caused by adsorption of nanometer structured polysilicon on the surface of porous media, SPE Asia Pacific Oil and Gas Conference and Exhibition, Society of Petroleum Engineers. [Google Scholar]
  • Ju B., Fan T., Li Z. (2012) Improving water injectivity and enhancing oil recovery by wettability control using nanopowders, J. Petrol. Sci. Eng. 86, 206–216. [CrossRef] [Google Scholar]
  • Ju B., Fan T., Ma M. (2006) Enhanced oil recovery by flooding with hydrophilic nanoparticles, China Particuology 4, 1, 41–46. [CrossRef] [Google Scholar]
  • Ju B., Fan T. (2009) Experimental study and mathematical model of nanoparticle transport in porous media, Powder Technol. 192, 2, 195–202. [Google Scholar]
  • Kanj M.Y., Funk J.J., Al-Yousif Z. (eds) (2009) Nanofluid coreflood experiments in the ARAB-D, SPE Saudi Arabia Section Technical Symposium, Society of Petroleum Engineers. [Google Scholar]
  • Karimi A., Fakhroueian Z., Bahramian A., Pour Khiabani N., Babaee Darabad J., Azin R., Arya S. (2012) Wettability alteration in carbonates using zirconium oxide nanofluids: EOR implications, Energy Fuels 26, 2, 1028–1036. [Google Scholar]
  • Kashefi S., Lotfollahi M.N., Shahrabadi A. (2018) Investigation of asphaltene adsorption onto zeolite beta nanoparticles to reduce asphaltene deposition in a silica sand pack, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 73, 2. [CrossRef] [Google Scholar]
  • Løvoll G., Méheust Y., Måløy K.J., Aker E., Schmittbuhl J. (2005) Competition of gravity, capillary and viscous forces during drainage in a two-dimensional porous medium, a pore scale study, Energy 30, 6, 861–872. [CrossRef] [Google Scholar]
  • Maghzi A., Mohebbi A., Kharrat R., Ghazanfari M.H. (2011) Pore-scale monitoring of wettability alteration by silica nanoparticles during polymer flooding to heavy oil in a five-spot glass micromodel, Transp. Porous Media 87, 3, 653–664. [Google Scholar]
  • Mandal A., Bera A., Ojha K., Kumar T. (eds) (2012) Characterization of surfactant stabilized nanoemulsion and its use in enhanced oil recovery, SPE International Oilfield Nanotechnology Conference and Exhibition, Society of Petroleum Engineers. [Google Scholar]
  • Metin C., Bonnecaze R., Nguyen Q. (2013) The viscosity of silica nanoparticle dispersions in permeable media, SPE Reserv. Evalu. Eng. 16, 3, 327–332. [CrossRef] [Google Scholar]
  • Miranda C.R., de Lara LS, Tonetto B.C. (eds) (2012) Stability and mobility of functionalized silica nanoparticles for enhanced oil recovery applications, SPE International Oilfield Nanotechnology Conference and Exhibition, Society of Petroleum Engineers. [Google Scholar]
  • Mohan K., Gupta R., Mohanty K. (2011) Wettability altering secondary oil recovery in carbonate rocks, Energy Fuels 25, 9, 3966–3973. [Google Scholar]
  • Moradi B., Pourafshary P., Jalali F., Mohammadi M., Emadi M. (2015) Experimental study of water-based nanofluid alternating gas injection as a novel enhanced oil-recovery method in oil-wet carbonate reservoirs, J. Nat. Gas Sci. Eng. 27, 64–73. [Google Scholar]
  • Moradi B., Pourafshary P., Jalali F., Mohammadi M. (2016) Effects of nanoparticles on gas production, viscosity reduction, and foam formation during nanofluid alternating gas injection in low and high permeable carbonate reservoirs, Can. J. Chem. Eng. 95, 3, 479–490. [Google Scholar]
  • Morrow N.R. (1990) Wettability and its effect on oil recovery, J. Petrol. Technol. 42, 12, 1476–1484. [CrossRef] [Google Scholar]
  • North F.K. (1985) Petroleum geology, Allen & Unwin, Boston. [Google Scholar]
  • Ogolo N., Olafuyi O., Onyekonwu M. (eds) (2012) Enhanced oil recovery using nanoparticles, SPE Saudi Arabia Section Technical Symposium and Exhibition, Society of Petroleum Engineers. [Google Scholar]
  • Onyekonwu M.O., Ogolo N.A. (eds) (2010) Investigating the use of nanoparticles in enhancing oil recovery, Society of Petroleum Engineers. [Google Scholar]
  • Parvazdavani M., Masihi M., Ghazanfari M.H., Sherafati M., Mashayekhi L. (eds) (2012) Investigation of the effect of water based nano-particles addition on hysteresis of oil-water relative permeability curves, Society of Petroleum Engineers. [Google Scholar]
  • Puntervold T., Strand S., Austad T. (2007) Water flooding of carbonate reservoirs: Effects of a model base and natural crude oil bases on chalk wettability, Energy Fuels 21, 3, 1606–1616. [Google Scholar]
  • Qin J., Li A. (2001) Physics of oil reservoir, China University of Petroleum Press, Dongying, pp. 151–152. [Google Scholar]
  • Qiu F., Mamora D.D. (eds) (2010) Experimental study of solvent-based emulsion injection to enhance heavy oil recovery in Alaska North slope area, Canadian Unconventional Resources, Society of Petroleum Engineers. [Google Scholar]
  • Romanovsky B., Makshina E. (2004) Nanocomposites as functional materials, Soros Educational J. 8, 2. [Google Scholar]
  • Roustaei A., Bagherzadeh H. (2015) Experimental investigation of SiO2 nanoparticles on enhanced oil recovery of carbonate reservoirs, J. Petrol. Explor. Prod. Technol. 5, 1, 27–33. [CrossRef] [Google Scholar]
  • Roustaei A., Moghadasi J., Bagherzadeh H., Shahrabadi A. (eds) (2012) An experimental investigation of polysilicon nanoparticles’ recovery efficiencies through changes in interfacial tension and wettability alteration, Society of Petroleum Engineers. [Google Scholar]
  • Schlumberger Market Analysis (2007) Annual Report. [Google Scholar]
  • Sepehrinia K. (2017) Molecular dynamics simulation for surface and transport properties of fluorinated silica nanoparticles in water or decane: Application to gas recovery enhancement, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 72, 17. [CrossRef] [Google Scholar]
  • Shahrabadi A., Bagherzadeh H., Roostaie A., Golghanddashti H. (eds) (2012) Experimental investigation of HLP nanofluid potential to enhance oil recovery: A mechanistic approach, Society of Petroleum Engineers. [Google Scholar]
  • Skauge T., Spildo K., Skauge A. (eds) (2010) Nano-sized particles for EOR, SPE Improved Oil Recovery Symposium, Society of Petroleum Engineers. [Google Scholar]
  • Skjaeveland S., Siqveland L., Kjosavik A., Hammervold W., Virnovsky G. (eds) (1998) Capillary pressure correlation for mixed-wet reservoirs, SPE India Oil, Society of Petroleum Engineers. [Google Scholar]
  • Standnes D.C., Austad T. (2003) Wettability alteration in carbonates: Interaction between cationic surfactant and carboxylates as a key factor in wettability alteration from oil-wet to water-wet conditions, Colloids Surf. A Physicochem. Eng. Aspects 216, 1, 243–259. [CrossRef] [Google Scholar]
  • Standnes D.C., Austad T. (2000) Wettability alteration in chalk: 2. Mechanism for wettability alteration from oil-wet to water-wet using surfactants, J. Petrol. Sci. Eng. 28, 3, 123–143. [CrossRef] [Google Scholar]
  • Sun X., Zhang Y., Chen G., Gai Z. (2017) Application of nanoparticles in enhanced oil recovery: a critical review of recent progress, Energies 10, 3, 345. [CrossRef] [Google Scholar]
  • Tabrizy V.A., Hamouda A., Denoyel R. (2011) Influence of magnesium and sulfate ions on wettability alteration of calcite, quartz, and kaolinite: surface energy analysis, Energy Fuels 25, 4, 1667–1680. [Google Scholar]
  • Vatanparast H., Alizadeh A., Bahramian A., Bazdar H. (2011) Wettability alteration of low-permeable carbonate reservoir rocks in presence of mixed ionic surfactants, Petrol. Sci. Technol. 29, 18, 1873–1884. [CrossRef] [Google Scholar]
  • Wagner O., Leach R.O. (1966) Effect of interfacial tension on displacement efficiency, SPE J. 6, 4, 335–344. [Google Scholar]
  • Wang L., Zhang G., Li G., Zhang J., Ding B. (eds) (2010) Preparation of microgel nanospheres and their application in EOR, Society of Petroleum Engineers. [Google Scholar]
  • Yu J., An C., Mo D., Liu N., Lee R.L. (eds) (2012) Study of adsorption and transportation behavior of nanoparticles in three different porous media, SPE Improved Oil Recovery Symposium, Society of Petroleum Engineers. [Google Scholar]
  • Yu J., Berlin J.M., Lu W., Zhang L., Kan A.T., Zhang P., et al. (eds) (2010) Transport study of nanoparticles for oilfield application, Society of Petroleum Engineers. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.