Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 74, 2019
Article Number 14
Number of page(s) 17
DOI https://doi.org/10.2516/ogst/2018066
Published online 26 February 2019
  • Adams J. (1997) Natural gas salt cavern storage operating pressure determination, Technical Meeting/Petroleum Conference of the South Saskatchewan Section, Regina, Saskatchewan, 19–22 October, pp. 1–15. . [Google Scholar]
  • Albrecht H., Meister D., Storck G.H., Wallner M. (1980) Zur Frage des Standsicherheitsnachweises von Hohlräumen in Salzgetseinen, Proceedings of the 5th International Symposium on Salt, Hamburg, Germany, May 29–June 1, pp. 195–211 (in Deutsch). [Google Scholar]
  • Allgemeine Bergverordnung für Untertagebetriebe, Tagebaue und Salinen (ABVO) (1966) vom 2, Februar. (Nds. MBI. Nr. 15/1966 S.337) (in Deutsch). [Google Scholar]
  • API (1994) Design of solution-mined underground storage practices, API Recommended Practice 1114, American Petroleum Institute, Washington, DC, June. [Google Scholar]
  • Ardeshiri S., Yazani M. (2008) Numerical study of fault geometrical effects on seismic stability of large underground caverns, 42nd U.S. Rock Mechanics Symposium (USRMS), San Francisco, CA, 29 June–2 July, pp. 1–8. [Google Scholar]
  • Asgari A., Brouard B. (2014) better understand the behaviour of salt caverns using LOCASbetter understand the behaviour of salt caverns using LOCAS, Proc. 1st underground storing of oil and natural gas, University of Tehran, Tehran, Iran, 20–21 May. [Google Scholar]
  • Aubertin M., Gill D.E., Ladanyi B. (1991) A unified viscoplastic model for the inelastic flow of alkali halides, Mech Mater. 11, 1, 63–82. [Google Scholar]
  • Axel G. (2007) Natural Gas Storage in Salt Caverns -Present Status, Developments and Future Trends in Europe, Proceedings of the SMRI Spring Meeting, Spring 2007 Conference, Basel, Switzerland, 29 April–2 May. [Google Scholar]
  • Baar C.A. (1977) Applied Salt-Rock Mechanic. Developments in Geotechnical Eng. 16-A, Elsevier. [Google Scholar]
  • Barron T.F. (1994) Regulatory, technical pressures prompt more U.S. salt-cavern gas storage, Oil Gas J. (OGJ Special), 92, 37, 55–67. [Google Scholar]
  • Bauer S., Sobolik S. (2009) Pressure cycling in compressed air and natural gas storage in salt: Tracking stress states and cavern closure using 3-D Finite Element Code. SMRI Spring Meeting, Krakow, Poland, p. 129. [Google Scholar]
  • Berest P., Brouard B., Dump G. (1998) Behaviour of Sealed solution-mined caverns, Proc. 4th Conf. Beh. Of Salt, Aubertin and Hardy ed., Trans Tech Pub., Clausthal-Zellerfeld, pp. 511–524. [Google Scholar]
  • Bérest P., Brouard B., de Greef V. (2001) Salt permeability testing, SMRI Research Project No. 2001 1. [Google Scholar]
  • Bérest P., Brouard B., Feuga B., Karimi-Jafari M. (2008) The 1873 collapse of the Saint-Maximilien panel at the Varangeville salt mine, Int. J. Rock Mech. Min. Sci. 45, 7, 1025–1043. [CrossRef] [Google Scholar]
  • Bérest P., Djizanne H., Brouard B., Hévin G. (2012) Rapid depressurizations: Can they lead to irreversible damage? Proceedings of the SMRI Spring Meeting, Regina, pp. 63–86. [Google Scholar]
  • Boucly Ph., Legeneur J. (1980) Hydrocarbon storage in cavities leached out of salt formations, Proceedings of Subsurface Space, Rockstore 80, 1, p. 255. [Google Scholar]
  • Brouard Consulting (2014) LOCAS software, http://www.brouard-consulting.com. [Google Scholar]
  • Brouard B., Bérest P., Karimi-Jafari M. (2007) onset of tensile effective stresses in gas storage caverns, Solution Mining Research Institute, Fall 2007 Technical Meeting, Halifax, Canada, October 8–10. [Google Scholar]
  • Bruno M., Dorfmann L., Han G., Lao K., Young J. (2005) 3D geomechanical analysis of multiple caverns in bedded salt. Proceedings of the Fall Technical Meeting, Solution Mining Research Institute, Nancy, French. [Google Scholar]
  • BVOT (2006) Bergverordnung für Tiefbohrungen, Untergrundspeicher und für die Gewinnung von Bodenschätzen durch Bohrungen im Land Niedersachsen (Tiefbohrverordnung –BVOT-), 9, 20 (in Deutsch). [Google Scholar]
  • Cai M., Kaiser P.K., Morioka H., Minami M., Maejima T., Tasaka Y. (2007) FLAC/PFC coupled numerical simulation of A Enlargescale underground excavations, Int. J. Rock Mech. Min. Sci. 44, 4, 550–564. [CrossRef] [Google Scholar]
  • Chabannes C.C., Durup J.G., Lanham P. (1999) Geomechanical Evaluation of Sabine Gas Transmission Company’s Cavern No. 2 at Spindel Top Salt Dome, Solution Mining Research Institute Spring Meeting, Las Vegas, NV, April 11–14. [Google Scholar]
  • Chan K.S., Munson D.E., Bodner S.R., Fossum A.F. (1996) Cleavage and creep fracture of rock salt, Acta Mater. 44, 3553–3565. [Google Scholar]
  • Cristescu N. (1993) A general constitutive equation for transientand stationary creep of rock salt, Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 30, 2, 125–140. [CrossRef] [Google Scholar]
  • CSA – Canadian Standards Association (1993) Storage of Hydrocarbons in Underground Formations – Oil and Gas Industry Systems and Materials, Standard Z341-93, Canadian Standards Association, Rexdale, Ontario, Canada, July. [Google Scholar]
  • Cundall P.A. (1988) Formulation of a three-dimensional distinct element model – part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks, Int. J. Rock Mech. Min. Sci. 25, 3, 107–116. [CrossRef] [Google Scholar]
  • De Vries K.L., Mellegard K.D., Callahan G.D. (2002) Salt Damage Criterion: Proof-of-Concept Research, RESPEC Final Report 30 September 2000 – 29 September 2002 for United States Department of Energy National Energy Technology Laboratory, Topical Report. [Google Scholar]
  • De Vries K.L., Mellegard K.D., Callahan G.D., Goodman W.M. (2005) Cavern roof stability for natural gas storage in bedded salt, RESPEC final report 26 September 2002 – 31 March 2005 for United States Department of Energy National Energy Technology Lab. [Google Scholar]
  • De Vries K.L., Mellegard K.D., Callahan G.D. (2003) Cavern design using a salt damage, Solution Mining Research Institute, Spring Meeting, Houston, Texas, USA, 27–30 April. [Google Scholar]
  • Djizanne H., Bérest P., Brouard B. (2012) Tensile effective stresses in hydrocarbon storage caverns, Solution Mining Research Institute Fall 2012 Technical Conference, Bremen, Germany, 1–2 October. [Google Scholar]
  • Djizanne H., Berest P., Brouard B. (2014) The mechanical stability of a salt cavern used for compressed air energy storage (CAES), Proceedings of the 2014 Spring SMRI Technical Conference, San Antonio, Texas, USA, 4–7 May. [Google Scholar]
  • Dreyer W. (1982) Underground storage of oil and gas in salt deposits and other nonhard rocks, Ferdinand Enke Verlag, Stuttgart. [Google Scholar]
  • Ehgartner B., Sobolik S. (2002) 3-D Cavern Enlargement Analyses, Solution Mining Research Institute Spring Meeting, Banff, Alberta, Canada, April 29–May 1. [Google Scholar]
  • Frayne M.A., Van Sambeek L.L. (2002) Three-dimensional verification of salt pillar design equation, in: Cristescu N.D., Hardy J.R., Simionescu R.O. (eds),Proceedings of the Fifth Conference on the Mechanical Behaviour of Salt, August 9–11, University of Bucharest, Bucharest, Romania, A. A. Balkema, Netherlands, pp. 405–409. [Google Scholar]
  • Fu C.H., Chen S.H. (2008) Study on instability criteria of surrounding rock of underground engineering cavern based on catastrophe theory, Rock Soil Mech. 29, 167–172 (in Chinese). [Google Scholar]
  • Gehle R.M., Thoms R.L. (1983) Analysis of a cavern near the flank of a salt dome, Sixth International Symposium on Salt, Vol. I, The Salt Institute Publisher, Toronto, Canada, pp. 545–548. [Google Scholar]
  • Günther R., Salzer K., Popp T. (2010) Advanced strain-hardening approach constitutive model for rock salt describing transient, stationary, and accelerated creep and dilatancy, 44th US rock mechanics symposium and 5th US-Canada rock mechanics symposium, American Rock Mechanics Association. [Google Scholar]
  • Gunther R.M., Salzer K. (2007) A model for rock salt, describing transient, stationary, and accelerated creep and dilatancy, in: Wallner M., Lux K.H., Minkley W., Reginald Hardy, Jr. H. (eds), The Mechanical Behaviour of Salt: Understanding of THMC Processes in Salt, Taylor and Francis Group, London, pp. 109–117. [Google Scholar]
  • Hampel A. (2012) The CDM constitutive model for the mechanical behaviour of rock salt: Recent developments and extensions, Proceedings of the 7th Conference on Mechanical Behaviour of Salt, Paris, 16–19 April. [Google Scholar]
  • Hampel A., Salzer K., Gunther R.-M., Minkley W., Pudewills A., Leuger B., Zapf D., Staudtmeister K., Rokahr R., Herchen K., Wolters R., Lux K.-H. (2012) Joint projects on the comparison of constitutive models for the mechanical behaviour of rock salt. II. Overview of models and results 3D benchmark calculations, in: Berest P., Ghoreychi M., Hadj-Hassen F., Tijani M. (eds), Mechanical Behaviour of Salt VII, Taylor and Francis Group, London. [Google Scholar]
  • Han G., Bruno M.S., Lao K., Young J., Dorfmann L. (2007) Gas storage and operations in single-bedded salt caverns: Stability analyses, SPE Prod. Oper. 22, 3, 368–376. [Google Scholar]
  • Hatzor Y.H., Heyman E.P. (1997) Dilation of Anisotropic Rock Salt: Evidence From Mount Sedom Diapir, J. Geophys. Res. 102, B7, 14853–14868. [Google Scholar]
  • He M., Huang B., Zhu C., Chen Y., Li N. (2018) Energy dissipation-based method for fatigue life prediction of rock salt, Rock Mech. Rock Eng. 51, 1447–1455. [Google Scholar]
  • Heusermann S., Rolfs O., Schmidt U. (2003) Nonlinear finite-element analysis of solution mined storage caverns in rock salt using the LUBBY2 constitutive model Comput. Struct. 81, 629–638. [Google Scholar]
  • Hilbert L.B., Exponent V.K. (2008) Salt mechanics and casing deformation in solution-mined gas storage operations, 42nd U.S. Rock Mechanics Symposium (USRMS), San Francisco, CA, 29 June–2 July, pp. 1–12. [Google Scholar]
  • Hoffman E.L. (1993) Effects of cavern spacing on the performance and stability of gas-filled storage caverns, SAND92-2545, Sandia National Laboratories, Albuquerque, NM, US. [Google Scholar]
  • Hoffman E.L., Ehgartner B.L. (1993) Evaluating the effects of number of caverns on the performance of underground oil storage facilities, 34th U.S. Symposium on Rock Mechanics (USRMS), Madison, Wisconsin, 28–30 June, pp. 1–4. [Google Scholar]
  • Hou Z. (2003) Mechanical and hydraulic behaviour of rock salt in the excavation disturbed zone around underground facilities, Int. J. Rock Mech. Min. Sci. 40, 1, 725–738. [CrossRef] [Google Scholar]
  • Hou Z., Lux K.-H. (1999) A material model for rock salt including structural damages as well as practiceoriented applications, in: Cristescu N.D., Hardy Jr. H.R., Simionescu R.O. (eds), Basic and Applied Salt Mechanics, Proc. of the Fifth Conference on the Mechanical Behaviour of Salt (MECASALT 5), Lisse Swets & Zietlinger (Balkama), Bucharest, pp. 55–59. [Google Scholar]
  • Hunsche U.E. (1993) Failure behaviour of rock around underground cavities, Proceedings, 7th Symposium on Salt, Kyoto International Conference Hall, Kyoto, Japan, April 6–9. [Google Scholar]
  • IOGCC (1995) Natural Gas Storage in Salt Caverns – A Guide for State Regulators, Interstate Oil and Gas Compact Commission, Oklahoma City, OK, October. [Google Scholar]
  • Karimi-Jafari M., Gatelier N., Brouard B., Bérest P., Djizanne H. (2011) Multi-cycle gas storage in salt caverns, Solution Mining Research Institute Fall 2011 Technical Conference, York, United Kingdom, 3–4 October. [Google Scholar]
  • Kenneth H., John J.C., John F.O. (2008) Legacies of catastrophic rock slope failures in mountain landscapes, Earth-Sci. Rev. 87, 1–38. [CrossRef] [Google Scholar]
  • Kortas G. (1979) Ruch górotworu przed wdarciem się wód do wyrobisk kopalni soli w Wapnie, Ochrona Terenów Górniczych, nr 49. Katowice (in Polish). [Google Scholar]
  • Kuhne G., Rohr W.U., Sasse W. (1973) Kiel gas storage facility, tlze first city gas cavern in Germany, Proc. 12th World Gas Congress, Nice. [Google Scholar]
  • Labaune P., Rouabhi A., Tijani M., Blanco-Martin L., You T. (2018) Dilatancy criteria for salt cavern design: a comparison between stress-and-train-based approaches, Rock Mech. Rock Eng. 51, 599–611. [Google Scholar]
  • Leuger B., Staudtmeister K., Zapf D. (2012) The thermo-mechanical behavior of a gas storage cavern during high frequency loading, Proceedings, Mechanical Behavior of Salt VII, Taylor & Francis Group, London, pp. 363–369. [Google Scholar]
  • Leynaud D., Sultan N. (2010) 3-D slope stability analysis: a probability approach applied to the nice slope, Marine Geol. 269, 89–106. [CrossRef] [Google Scholar]
  • Li X.B., Zhou Z.L., Lok T.S., et al. (2008) Innovative testing technique of rock subjected to coupled static and dynamic loads, Int. J. Rock Mech. Mining Sci. 45, 739–748. [CrossRef] [Google Scholar]
  • Liang C.G., Huang X., Peng X., Tian Y., Yu Y. (2016)Investigation on the cavity evolution of underground salt cavern gas storages, J. Nat. Gas Sci. Eng. 33, 118–134. [Google Scholar]
  • Liang W.G., Yang C.H., Zhao Y.S. (2007) Experimental investigation of mechanical properties of bedded salt rock, Int. J. Rock Mech. Min. Sci. 44, 400–411. [CrossRef] [Google Scholar]
  • Liu W., Muhammad N., Chen J., Spiers C.J., Peach C.J. (2016) Investigation on the permeability characteristics of bedded salt rocks, J. Nat. Gas Sci. Eng. 35, 468–482. [Google Scholar]
  • Lux K. (1997) Development of a new criterion for the determination of the maximum permissible internal pressure for gas storage caverns in rock salt, IUB, University of Hanover, SMRI. [Google Scholar]
  • Lux K.H., Dresen R. (2012) Design of salt caverns for high frequency cycling of storage gas, Proceedings, Mechanical Behavior of Salt VII, Taylor & Francis Group, London, pp. 371–380. [Google Scholar]
  • Ma H., Yang C., Qi Z., Li Y., Hao R. (2012) Experimental and Numerical analysis of salt cavern convergence in ultra-deep bedded formation, 46th U.S. Rock Mechanics/Geomechanics Symposium, Chicago, IL, 24–27 June, pp. 1–8. [Google Scholar]
  • Malinsky L. (2001) Evaluation of Salt Permeability Tests, SMRI Research Report, 89 p. [Google Scholar]
  • Michael S., Dusseault M., BrunoB. (2002) Geomechanical analysis of pressure limits for thin bedded salt caverns, Solution Mining Research Institute, Spring 2002 Technical Meeting, Banff, Alberta, Canada, 29–30 April. [Google Scholar]
  • Minkley W., Mühlbauer J. (2007) Constitutive models to describe the mechanical behaviour of salt rocks and the imbedded weakness planes, in: Wallner M., Lux K.-H., Minkley H., Hardy, Jr. R. (eds), Proceedings of the 6th Conference (SaltMech6) The Mechanical Behaviour of Salt – Understanding of THMC Processes in Salt, Germany, 22–25 May. [Google Scholar]
  • Minkley W., Menzel W., Konietzky H., te Kamp L. (2001) A viscoelasto- plastic model and its application for solving static and dynamic stability problems in potash mining, Proceedings of the 2nd international FLAC symposium, Lyon, 29–31 October, pp. 21–27. [Google Scholar]
  • Munson D.E. (1993) Extension of the M-D model for treating stress drops in salt, Third Conference on the Mechanical Behaviour of Salt, Ecole Polytechnique, Palaiseau France, pp. 31–44. [Google Scholar]
  • Munson D.E., Dawson P.R. (1981) Salt constitutive modeling using mechanism maps, First Conference on the Mechanical Behaviour of Salt, Pennsylvania State University, pp. 717–737. [Google Scholar]
  • Nazary Moghadam S., Mirzabozorg H., Noorzad A. (2013) Modeling time-dependent behaviour of gas caverns in rock salt considering creep, dilatancy and failure, Tunn. Undergr. Space Technol. 33, 171–185. [CrossRef] [Google Scholar]
  • Nieland J.D., Ratigan J.L. (2006) Geomechanical evaluation of two gulf coast natural gas storage caverns, Proceedings of the SMRI Spring Meeting, Brussels, pp. 61–89. [Google Scholar]
  • Nieland J.D., Mellegard K.D., Schalge R.S., Kaiser H.D. (2001) Storage of Chilled Natural Gas in Bedded Salt Storage Caverns, RSI-1354, prepared by RESPEC, Rapid City, SD, for U.S., Department of Energy, Morgantown, WV, 117 p. [Google Scholar]
  • Pan Y.Y., Zhang Y., Wang Z.Q. (2009) Catastrophe theoretical analysis of disintegratedoutburst of a single coal shell in coal-gas outburst, Rock Soil Mech. 30, 595–603. [Google Scholar]
  • Pellizzaro C., Bergeret G., Leadbetter A., Charnavel Y. (2011) Thermomechanical behaviour of Stublach gas storage caverns. Proceedings of the SMRI Fall Meeting, York, UK, pp. 161–178. [Google Scholar]
  • Pudewills A. (2007) Modeling of hydro-mechanical behaviour of rock salt in the near field of repoistory excavtions, The mechanical behaviour of salt: understanding of THMC processes in salt, Talor & Francis Pub Group, London, pp. 195–200. [Google Scholar]
  • Ratigan J.L., Van Sambeek L.L., De Vries K.L., Nieland J.D. (1991) The Influence of Seal Design on the Development of the Disturbed Rock Zone in the WIPP Alcove Seal Tests, RSI-0400, prepared by RESPEC Inc., Rapid City, SD, for Sandia National Lab, Albiquerque, NM. [Google Scholar]
  • Rokahr R., Durup G. (2009) Over 40 years of development of design criteria for salt caverns. Solution Mining Research Institute Spring 2009 Technical Conference, Krakow, Poland, 27–28 April. [Google Scholar]
  • Rokahr R.B., Staudtmeister K., Zapf D. (2011) Rock mechanical design for a planned gas cavern field in the Preesall Project area, Lancashire, UK, Proceedings of the SMRI Fall Meeting, York, UK, pp. 190–203. [Google Scholar]
  • Sałustowicz A., Dziunikowski J.L., Hwałek S. (1963) Wytrzymałość górotworu przy eksploatacji złoża solnego komorami poziomymi i pionowymi, Państwowa Rada Górnictwa PAN. SITG. Katowice (in Polish). [Google Scholar]
  • Sobolik S.R., Ehgartner B.L. (2006) Analysis of shapes for the strategic petroleum reserve, Sandia National Laboratories, USA. [Google Scholar]
  • Spiers C.J., Peach C.J., Brzesowsky R.H., Schutjens P.M.T.M., Liezenberg J.L., Zwart H.J. (1988) Long term rheological and transport properties of dry and wet salt rocks, EUR 11848, prepared for Commission of the European Communities, by University of Utrecht, Utrecht, The Netherlands. [Google Scholar]
  • Staudtmeister K., Rokahr R.B. (1997) Rock mechanical design of storage caverns for natural gas in rock salt mass, Int. J. Mech. Mining Sci., 34 (3–4), 300–313 [Google Scholar]
  • Staudtmeister K., Zapf D. (2010) Rock mechanical design of gas storage caverns for seasonal storage and cyclic operations, Proceedings of the SMRI Spring Meeting, Grand Junction, Colorado, pp. 197–213. [Google Scholar]
  • Stormont J. (2001) Evaluation of permeability measurements on spherical salt specimens, SMRI Fall Meeting, Albuquerque, pp. 19–39. [Google Scholar]
  • Stormont J.C., Daemen J.J.K., Desai C.S. (1992) Prediction of dilation and permeability changes in rock salt, Int. J. Numer. Anal. Methods Geomech. 16, 545–569. [Google Scholar]
  • Thom R. (1972) Stabilité structurelle et morphogenèse. Essai d’une théorie générale des modèles (2nd edition, revised and augmented 1977) Interéditions, Paris (citations are based on the second edition) (in French). [Google Scholar]
  • Thoms R.L., Gehle R.M., Brassow C.L. (1999) Analyses of salt caverns with granular wastes, Solution Mining Research Institute Spring Meeting, Las Vegas, NV, 11–14 April. [Google Scholar]
  • Thorel L., Ghoreychi M., Cosenza Ph., Chanchole S. (1996) Rocksalt damage & failure under dry or wet conditions, in: Aubertin M., Hardy Jr. H.R. (eds), École Polytechnique de Montréal, Mineral Engineering Department, Québec, Canada, June 17 and 18, Penn State University, Trans Tech Publications, Clausthal, Germany, pp. 189–202 [Google Scholar]
  • Tijani M., Vouille G., Hugout B. (1983) Le sel gemme en tant que liquid visqueux, Congrès International de Mécanique des Roches, Melbourne, pp. 241–246 (in French). [Google Scholar]
  • Van Sambeek L. (1997) Salt pillar design equation, in: Peng S.S., Holland C.T. (eds), Proceedings of the 16th International Conference on Ground Control in Mining, West Virginia University, Morgantown, WV, August 5–7, pp. 226–234. [Google Scholar]
  • Van Sambeek L.L., Ratigan J.L., Hansen F.D. (1993) Dilatancy of Rock Salt in Laboratory Test, in: Haimson B.C. (ed),Proceedings, 34th U.S. Symposium on Rock Mechanics, University of Wisconsin-Madison, Madison, WI, June 27–30, International Journal of Rock Mechanics And Mining Science & Geomechanics Abstract, 30, 7, Pergamon Press, pp. 735–738. [Google Scholar]
  • Vining C.A., Buchholz S.A. (2013) Capabilities of numerical modeling of storage caverns located in close proximity to domal boundaries, Solution Mining Research Institute Spring 2013 Technical Conference, Lafayette, Louisiana, USA, April, pp. 22–23. [Google Scholar]
  • Wallner M. (1988) Frac-pressure risk for cavities in rock salt, in: Hardy, Jr. H.R., Langer M. (eds), Proceedings of 2nd conference on the mechanical behaviour of salt, Trans Tech Pub, Clausthal-Zellerfeld, pp. 645–658. [Google Scholar]
  • Wallner M., Eickemeier R. (2001) Subsidence and fractures caused by thermo-mechanical effects, Proceedings of the SMRI Spring Meeting, Orlando, Florida, pp. 363–371. [Google Scholar]
  • Waltham A.C., Chorlton I.G. (1993) Rock roof stability in the sandstone caves of Nottingham, Engineering Geology of Weak Rock, Balkema, Rotterdam, pp. 489–492. [Google Scholar]
  • Wang B.Q., Zhang Q.Y., Li S.C., Yang C.H. (2011) Study of optimization of design parameters for underground gas storage in salt rock, Chinese J. Rock Mech. Eng. 33, 34–40. [CrossRef] [Google Scholar]
  • Wang G.J., Liu P., Yuan J.W., Liu L., Guo K.M. (2009) Creep deformation distinction analysis of gas storage cavern in bedded salt formation, in: Hudson J.A. (ed), Proceedings of the rock mechanics symposium (SINOROCK2009), ISRM and Hong Kong University, Hong Kong, pp. 156–159. [Google Scholar]
  • Wang T., Yan X., Yang H., Yang X., Jiang T., Zhao S. (2013) A new shape design method of salt cavern used as underground gas storage, Appl. Energy 104, 50–61. [Google Scholar]
  • Wang T.T., Yang C.H., Yan X.Z., Daemen J.J.K. (2015) Allowable pillar width for bedded rock salt caverns gas storage, J. Pet. Sci. Eng. 127, 433–444. [Google Scholar]
  • Wang T., Yang C., Ma H., Li Y., Shi X., Li J., Daemen J.J.K. (2016) Safety evaluation of salt cavern gas storage close to an old cavern, Int. J. Rock Mech. Min. Sci. 83, 95–106. [CrossRef] [Google Scholar]
  • Wolters R., Lux K., Düsterloh U. (2012) Evaluation of rock salt barriers with respect to tightness: influence of thermomechanical damage, fluid infiltration and sealing/healing, Proceedings of the seventh international conference on the mechanical behaviour of salt, Paris, 16–19 April 2012, pp. 425–434. [Google Scholar]
  • Wu J.H., Ohnishi Y., Nishiyama S. (2004) Simulation of the mechanical behaviour of inclined jointed rockmasses during tunnel construction using discontinuous deformation analysis (DDA), Int. J. Rock Mech. Min. Sci. 41, 5, 731–743. [CrossRef] [Google Scholar]
  • Yang C., Jing W., Daemen J., Zhang G., Du. C. (2013) Analysis of major risks associated with hydrocarbon storage caverns in bedded salt rock, Reliab. Eng. Syst. Safe. 113, 94–111. [CrossRef] [Google Scholar]
  • Yang K., Wang T.X., Ma Z.T. (2010) Application of cusp catastrophe theory to reliability analysis of slopes in open-pit mines, Mining Sci. Tech. 20, 71–75. [Google Scholar]
  • Zapf D. (2014) Rock mechanical dimensioning of gas storage caverns in the salt dome edge region Solution Mining Research Institute Fall 2014 Technical Conference, Groningen, The Netherlands, September, pp. 29–30. [Google Scholar]
  • Zapf D., Staudtmeister K. (2009) Aspects for the design of gas caverns in the border region of salt domes – initial conditions and assumptions, SMRI Spring 2009 Technical Conference, April, Krakow, Poland, pp. 26–29. [Google Scholar]
  • Zapf D., Staudtmeister K., Rokahr R.B. (2012) Analysis of thermal induced fractures in salt, in: Proceedings of the SMRI Spring Meeting, Regina, Saskatchewan, pp. 47–62. [Google Scholar]
  • Zhang N., Shi X., Wang T., Yang C., Liu W., Ma H., Daemen J.J.K. (2017) Stability and availability evaluation of underground strategic petroleum reserve (SPR) caverns in bedded rock salt of Jintan, China, J. Energy 134, 504–514. [CrossRef] [Google Scholar]
  • Zhao S.Y., Zheng Y.R., Shi W.M. et al. (2002) Analysis on safety factor of slope by strength reduction FEM, Chin. J. Geotech. Eng. 24, 343–346. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.