Open Access
Issue
Oil & Gas Science and Technology - Rev. IFP Energies nouvelles
Volume 73, 2018
Article Number 40
Number of page(s) 7
DOI https://doi.org/10.2516/ogst/2018046
Published online 02 October 2018
  • Saikia T., Mahto V. (2018) Temperature augmented visual method for initial screening of hydrate inhibitors, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 73, 1. [Google Scholar]
  • Chen C., Yang L., Jia R., Sun Y.H., Guo W., Chen Y., Li X.T. (2017) Simulation study on the effect of fracturing technology on the production efficiency of natural gas hydrate, Energies 10, 8, 1241. [CrossRef] [Google Scholar]
  • Wang Y., Feng J.C., Li X.S., Zhang Y., Li G. (2015) Analytic modeling and large-scale experimental study of mass and heat transfer during hydrate dissociation in sediment with different dissociation methods, Energy 90, 1931–1948. [CrossRef] [Google Scholar]
  • Hou J., Xia Z.Z., Li S.X., Zhou K., Lu N. (2016) Operation parameter optimization of a gas hydrate reservoir developed by cyclic hot water stimulation with a separated-zone horizontal well based on particle swarm algorithm, Energy 96, 581–591. [CrossRef] [Google Scholar]
  • Liang Y.P., Li X.S., Li B. (2015) Assessment of gas production potential from hydrate reservoir in Qilian Mountain Permafrost using five-spot horizontal well system, Energies 8, 10796–10817. [CrossRef] [Google Scholar]
  • Wang Y., Feng J.C., Li X.S., Zhang Y., Chen Z.Y. (2016) Large scale experimental investigation on influences of reservoir temperature and production pressure on gas production from methane hydrate in sandy sediment, Energ. Fuel. 30, 4, 2760–2770. [CrossRef] [Google Scholar]
  • Lv X.F., Shi B.H., Wang Y., Tang Y.X., Wang L.Y., Gong J. (2014) Experimental study on hydrate induction time of gas-saturated water-in-oil emulsion using a high-pressure flow loop, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 70, 6, 1111–1124. [Google Scholar]
  • Yang Lin, Chen C., Jia R., Sun Y.H., Gou W., Pan D.B., Li X.T., Chen Y. (2018) Influence of reservoir stimulation on marine gas hydrate conversion efficiency in different accumulation conditions, Energies 11, 2, 339. [CrossRef] [Google Scholar]
  • Li S.X., Zheng R.Y., Xu X.H., H J. (2016) Natural gas hydrate dissociation by hot brine injection, Petrol. Sci. Technol. 34, 5, 422–428. [CrossRef] [Google Scholar]
  • Ding Y.L., Xu C.G., Yu Y.S., Li S.X. (2017) Methane recovery from natural gas hydrate with simulated IGCC syngas, Energy 120, 192–198. [CrossRef] [Google Scholar]
  • Selim M.S., Sloan E.D. (1990) Hydrate dissociation in sediment, SPE Reserv. Eng. 5, 2, 245–251. [CrossRef] [Google Scholar]
  • Tang L.G., Li G., Feng Z.P., Fan S.S. (2006) Mathematic modeling on thermal recovery of natural gas hydrate, Nat Gas Ind 26, 2, 105–107. [Google Scholar]
  • Li S.X., Jiang X.X., Jiang H.Q., Li Q.Q. (2010) Sensitivity analysis of thermal dissociation of natural gas hydrate, Oil Drill. Prod. Technol. 32, 54–57. [Google Scholar]
  • Li M.C., Fan S.S., Su Y.L., Justin E., Lu M.J., Zhang L. (2015) Mathematical models of the heat-water dissociation of natural gas hydrates considering a moving Stefan boundary, Energy 90, 202–207. [CrossRef] [Google Scholar]
  • Willhite G.P. (1967) Over-all heat transfer coefficients in steam and hot water injection wells, J. Pet. Technol. 19, 607–615. [CrossRef] [Google Scholar]
  • Ramey H.J.J. (2013) Wellbore heat transmission, J. Pet. Technol. 14, 4, 427–435. [Google Scholar]
  • Hou J., Sun J.F. (2013) Thermal recovery technology, University of Petroleum Press, Dongying, pp. 56–79. [Google Scholar]
  • Garoosi F., Hoseininejad F., Rashidi M.M. (2016) Numerical study of natural convection heat transfer in a heat exchanger filled with nanofluids, Energy 109, 664–678. [CrossRef] [Google Scholar]
  • Oyama H., Konno Y., Masuda Y. (2009) Dependence of depressurization-induced dissociation of methane hydrate bearing laboratory cores on heat transfer, Energ. Fuel. 23, 10, 4995–5002. [CrossRef] [Google Scholar]
  • Zhao J.F., Liu D., Yang M.J., Song Y.C. (2014) Analysis of heat transfer effects on gas production from methane hydrate by depressurization, Int. J. Heat Mass Transfer 77, 529–541. [CrossRef] [Google Scholar]
  • Zhao J.F., Wang J.Q., Liu W.G., Song Y.C. (2015) Analysis of heat transfer effects on gas production from methane hydrate by thermal stimulation, Int. J. Heat Mass Transfer 87, 7, 145–150. [CrossRef] [Google Scholar]
  • Hao Y.M., Chen Y.M., Li S.X. (2007) Experimental study on production of natural gas hydrate by thermal stimulation, J. China Univer. Petrol. 31, 4, 60–63. [Google Scholar]
  • Hao Y.M., Chen X., Li S.X. (2012) Study on the effect of heat injection rate during NGH exploitation by thermal stimulation, Int. J. Adv. Comput. Technol. 4, 21, 550–557. [Google Scholar]
  • Li S.X., Xu X.X., Zheng R.Y., Chen Y.M., Hou J. (2015) Experimental investigation on dissociation driving force of methane hydrate in porous media, Fuel 160, 117–122. [CrossRef] [Google Scholar]
  • Goel N., Wiggins M., Shah S. (2001) Analytical modeling of gas recovery from in situ hydrates dissociation, J. Petrol. Sci. Eng. 29, 2, 115–127. [CrossRef] [Google Scholar]
  • Li S.X., Cao W., Li J., Gao Y.H. (2014) Experimental study on thermal front movement of natural gas hydrate by injecting hot water, Geoscience 28, 3, 659–662. [Google Scholar]
  • Chen Y.M., Li S.X., Hao Y.M. (2011) The theory and technology of natural gas hydrate exploitation, University of Petroleum Press, Dongying, pp. 246–251. [Google Scholar]
  • Winterton R.H.S. (1999) Newton’s law of cooling, Contemp. Phys. 40, 3, 205–212. [CrossRef] [Google Scholar]
  • Maurone P.A., Shiomos C. (1983) Newton’s Law of Cooling with finite reservoirs, Am. J. Phys. 51, 9, 857–859. [CrossRef] [Google Scholar]
  • Whitaker S. (1972) Forced convection heat transfer correlations for flow in pipes, past flat plates, single cylinders, single spheres, and for flow in packed beds and tube bundles, AICHE J. 18, 2, 361–371. [CrossRef] [Google Scholar]
  • Huang S.B. (2014) Heat transfer theory, University of Petroleum Press, Dongying, pp. 77–129. [Google Scholar]
  • Fourier J. (1955) The analytical theory of heat, Cambridge University Press, New York. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.