Open Access
Issue
Oil & Gas Science and Technology - Rev. IFP Energies nouvelles
Volume 73, 2018
Article Number 35
Number of page(s) 11
DOI https://doi.org/10.2516/ogst/2018037
Published online 25 September 2018
  • Teare M., Burrowes A., Baturin-Pollock C., Baturin-Pollock C., Rokosh D., Evans C., Marsh R. (2013) Alberta’s Energy Reserves 2012 and Supply/Demand Outlook 2013−2022. Energy Resources Conservative Board, ST98. [Google Scholar]
  • Rostami A., Arabloo M., Kamari A., Mohammadi A.H. (2017) Modeling of CO2 solubility in crude oil during carbon dioxide enhanced oil recovery using gene expression programming, Fuel 210, 768–782. [CrossRef] [Google Scholar]
  • Kariznovi M., Nourozieh H., Guan J.G.J., Abedi J. (2013) Measurement and modeling of density and viscosity for mixtures of Athabasca bitumen and heavy n-alkane, Fuel 112, 83–95. [CrossRef] [Google Scholar]
  • Nenniger J., Nenniger E. (2005) Method and apparatus for stimulating heavy oil production, Google Patents. [Google Scholar]
  • Nasr T.N., Ayodele O.R. (2006) New hybrid steam-solvent processes for the recovery of heavy oil and bitumen, Abu Dhabi International Petroleum Exhibition and Conference, Society of Petroleum Engineers. [Google Scholar]
  • Zhao L. (2004) Steam alternating solvent process, SPE International Thermal Operations and Heavy Oil Symposium and Western Regional Meeting, Society of Petroleum Engineers. [Google Scholar]
  • Leaute R.P. (2002) Liquid addition to steam for enhancing recovery (LASER) of bitumen with CSS: Evolution of technology from research concept to a field pilot at Cold Lake, SPE International Thermal Operations and Heavy Oil Symposium and International Horizontal Well Technology Conference, Society of Petroleum Engineers. [Google Scholar]
  • Gupta S., Gittins S., Picherack P. (2002) Field implementation of solvent aided process, Canadian International Petroleum Conference, Petroleum Society of Canada. [Google Scholar]
  • Sánchez-Lemus M., Okafor J., Ortiz D., Schoeggl F., Taylor S., Van Den Berg F., et al. (2015) Improved density prediction for mixtures of native and refined heavy oil with solvents, Energy Fuels 29, 5, 3052–3063. [CrossRef] [Google Scholar]
  • Gary J.H., Handwerk G.E., Kaiser M.J. (2007) Petroleum refining: technology and economics, CRC Press, Florida, USA. [Google Scholar]
  • Yaghi B.M., Al-Bemani A. (2002) Heavy crude oil viscosity reduction for pipeline transportation, Energy Sources 24, 2, 93–102. [CrossRef] [Google Scholar]
  • Van Den P.J.W.M., Schrijvers FAM (2009) Process to produce pipeline-transportable crude oil from feed stocks containing heavy hydrocarbons, Google Patents. [Google Scholar]
  • Uribe-Vargas V., Carreón-Calderón B., Ramírez-Jaramillo E., Ramírez-de-Santiago M. (2016) Thermodynamic characterization of undefined petroleum fractions of gas condensate using group contribution, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 71, 1, 5. [CrossRef] [Google Scholar]
  • Liu H., Cheng L., Xiong H., Huang S. (2017) Effects of solvent properties and injection strategies on solvent-enhanced steam flooding for thin heavy oil reservoirs with semi-analytical approach, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 72, 4, 20. [CrossRef] [Google Scholar]
  • Polishuk I. (2011) Hybridizing SAFT and cubic EOS: what can be achieved? Ind. Eng. Chem. Res. 50, 7, 4183–4198. [CrossRef] [Google Scholar]
  • Hankinson R.W., Thomson G.H. (1979) A new correlation for saturated densities of liquids and their mixtures, AIChE J. 25, 4, 653–663. [CrossRef] [Google Scholar]
  • Rackett H.G. (1970) Equation of state for saturated liquids, J. Chem. Eng. Data 15, 4, 514–517. [CrossRef] [Google Scholar]
  • Spencer C.F., Danner R.P. (1973) Prediction of bubble-point density of mixtures, J. Chem. Eng. Data 18, 2, 230–234. [CrossRef] [Google Scholar]
  • Bahari M., Rostami A., Joonaki E., Ali M. (2014) Investigation of a novel technique for decline curve analysis in comparison with the conventional models, Int. J. Comput. Appl. 98, 18, 1–11. [Google Scholar]
  • Rostami A., Anbaz M.A., Gahrooei H.R.E., Arabloo M., Bahadori A. (2017) Accurate estimation of CO2 adsorption on activated carbon with multi-layer feed-forward neural network (MLFNN) algorithm, Egypt J. Petrol. 27, 65–73. [CrossRef] [Google Scholar]
  • Rostami A., Arabloo M., Esmaeilzadeh S., Mohammadi A. (2018) On modeling of bitumen/n-tetradecane mixture viscosity: application in solvent-assisted recovery method, Asia-Pac. J Chem. Eng. 13, 1–15. [CrossRef] [Google Scholar]
  • Rostami A., Baghban A. (2018) Application of a supervised learning machine for accurate prognostication of higher heating values of solid wastes, Energy Sources, Part A 40, 5, 558–564. [CrossRef] [Google Scholar]
  • Safari H., Shokrollahi A., Moslemizadeh A., Jamialahmadi M., Ghazanfari M. H. (2014) Predicting the solubility of SrSO4 in Na–Ca–Mg–Sr–Cl–SO4–H2O system at elevated temperatures and pressures, Fluid Phase Equilibria 374, 86–101. [CrossRef] [Google Scholar]
  • Rostami A., Hemmati-Sarapardeh A., Shamshirband S. (2018) Rigorous prognostication of natural gas viscosity: Smart modeling and comparative study, Fuel 222, 766–778. [CrossRef] [Google Scholar]
  • Karkevandi-Talkhooncheh A., Rostami A., Hemmati-Sarapardeh A., Ahmadi M., Husein M.M., Dabir B. (2018) Modeling minimum miscibility pressure during pure and impure CO2 flooding using hybrid of radial basis function neural network and evolutionary techniques, Fuel 220, 1, 270–282. [CrossRef] [Google Scholar]
  • Rostami A., Kalantari-Meybodi M., Karimi M., Tatar A., Mohammadi A.H. (2018) Efficient estimation of Hydrolyzed Polyacrylamide (HPAM) solution viscosity for enhanced oil recovery process by polymer flooding, Oil Gas Sci. Technol. - Rev IFP Energies nouvelles, 73, 22. [Google Scholar]
  • Abbasi P., Madani M., Baghban A., Zargar G. (2017) Evolving ANFIS model to estimate density of bitumen-tetradecane mixtures, Petrol. Sci. Technol. 35, 2, 120–126. [CrossRef] [Google Scholar]
  • Rostami A., Ebadi H., Arabloo M., Meybodi M.K., Bahadori A. (2017) Toward genetic programming (GP) approach for estimation of hydrocarbon/water interfacial tension, J. Mol. Liq. 230, 175–189. [CrossRef] [Google Scholar]
  • Rostami A., Arabloo M., Ebadi H. (2017) Genetic programming (GP) approach for prediction of supercritical CO2 thermal conductivity, Chem. Eng. Res. Des. 122, 164–175. [CrossRef] [Google Scholar]
  • Bashipour F., Rahimi A., Khorasani S.N., Naderinik A. (2017) Experimental Optimization and Modeling of Sodium Sulfide Production from H2S-Rich Off-Gas via Response Surface Methodology and Artificial Neural Network, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 72, 2, 9. [Google Scholar]
  • Tavakoli H., Khoshkharam A., Sasanipour J., Baghban A. (2017) Modeling of the density of mixtures of Athabasca bitumen and a high boiling n-alkane, Petrol. Sci. Technol. 35, 6, 594–600. [CrossRef] [Google Scholar]
  • Kamari A., Pournik M., Rostami A., Amirlatifi A., Mohammadi A.H. (2017) Characterizing the CO2-brine interfacial tension (IFT) using robust modeling approaches: A comparative study, J. Mol. Liq. 246, 32–38. [CrossRef] [Google Scholar]
  • Rostami A., Ebadi H. (2017) Toward gene expression programming for accurate prognostication of the critical oil flow rate through the choke: correlation development, Asia-Pacific J. Chem. Eng. 12, 884–893. [CrossRef] [Google Scholar]
  • Rostami A., Shokrollahi A. (2017) Accurate prediction of water dewpoint temperature in natural gas dehydrators using Gene Expression Programming approach, J. Mol. Liq. 243, 196–204. [CrossRef] [Google Scholar]
  • Soroush E., Mesbah M., Shokrollahi A., Bahadori A., Ghazanfari M.H. (2014) Prediction of methane uptake on different adsorbents in adsorbed natural gas technology using a rigorous model, Energy & Fuels 28, 10, 6299–6314. [CrossRef] [Google Scholar]
  • Kamari A., Gharagheizi F., Shokrollahi A., Arabloo M., Mohammadi A.H. (2016) Integrating a robust model for predicting surfactant–polymer flooding performance, Journal of Petroleum Science and Engineering 137, 87–96. [CrossRef] [Google Scholar]
  • Rostami A., Masoudi M., Ghaderi-Ardakani A., Arabloo M., Amani M. (2016) Effective thermal conductivity modeling of sandstones: SVM framework analysis, Int. J. Thermophys. 37, 6, 1–15. [CrossRef] [Google Scholar]
  • Ferreira C. (2001) Gene expression programming: a new adaptive algorithm for solving problems, Complex Syst. 13, 2, 87–129. [Google Scholar]
  • Teodorescu L., Sherwood D. (2008) High energy physics event selection with gene expression programming, Comput. Phys. Commun. 178, 6, 409–419. [NASA ADS] [CrossRef] [Google Scholar]
  • Chok N.S. (2010) Pearson’s versus Spearman’s and Kendall’s correlation coefficients for continuous data, Graduate School of Public Health, University of Pittsburgh. [Google Scholar]
  • Meybodi M.K., Naseri S., Shokrollahi A., Daryasafar A. (2015) Prediction of viscosity of water-based Al2O3, TiO2, SiO2, and CuO nanofluids using a reliable approach, Chemometr. Intell. Lab. Sys. 149, 60–69. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.