Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 73, 2018
Article Number 19
Number of page(s) 10
DOI https://doi.org/10.2516/ogst/2018015
Published online 05 June 2018
  • Aleixo M., Prigent M., Gibert A., Porcheron F., Mokbel I., Joseb J., Jacquin M. (2011) Physical and chemical properties of DMXTM solvents, Energy Procedia 4, 148–155. [CrossRef] [Google Scholar]
  • Al-Ghawas H.A., Hagewiesch D., Ruiz-Ibanez G., Sandall O. (1989) Physicochemical properties important for carbon dioxide absorption in aqueous methyldiethanolamine, J. Chem. Eng. Data. 34, 385–391. [CrossRef] [Google Scholar]
  • Amann J.-M.G., Bouallou C. (2009) Kinetics of the absorption of CO2 in aqueous solution of N-methyldiethanolamine + triethylenetetramine, Ind. Eng. Chem. Res. 48, 3761–3770. [CrossRef] [Google Scholar]
  • Amrarene F., Bouallou C. (2004) Kinetics of carbonyl sulfide (COS) absorption withaqueous solution of diethanolamine and methyldiethanolamine, Ind. Eng. Chem. Res. 43, 6136–6141. [CrossRef] [Google Scholar]
  • Aroua M.K., Haji-Sulaiman M.Z., Ramasamy K. (2002) Modelling of carbon dioxideabsorption in aqueous solutions of AMP and MDEA and their blends using Aspen plus, Sep. Purif. Technol. 29, 153. [CrossRef] [Google Scholar]
  • Bashipour F., Rahimi A., Nouri Khorasani S., Naderinik A. (2017) Experimental optimization and modeling of sodium sulfide production from H2S-rich off-gas via response surface methodology and artificial neural network, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 72, 9. [Google Scholar]
  • Bosoaga A., Masek O., Oakey J.E. (2009) CO2 capture technologies for cement industry, Energy Procedia 1, 133–140. [CrossRef] [Google Scholar]
  • Bishnoi S., Rochelle G.T. (2002) Thermodynamics of piperazine/methyldiethanolamine/water/carbon dioxide, Ind. Eng. Chem. Res. 41, 604–612. [CrossRef] [Google Scholar]
  • Cadours R., Bouallou C. (1998) Rigorous simulation of gas absorption into aqueous solutions, Ind. Eng. Chem. Res. 37, 1063–1070. [CrossRef] [Google Scholar]
  • IEA Greenhouse gas R and D Programme. (2008) CO2 capture in the cement industry, 2008/3, July 2008. [Google Scholar]
  • Intergovernmental Panel on Climate Change. (IPCC, 2013). [Google Scholar]
  • Kanniche M., Gros-Bonnivard R., Jaud Ph., Valle-Marcos J., Amann J.-M., Bouallou C. (2010) Precombustion, postcombustion and oxycombustion in thermal power plant for CO2 capture, Appl. Therm. Eng. 30, 53–62. [CrossRef] [Google Scholar]
  • Knuutila H.K., Nannestad A. (2017) Effect of the concentration of MAPA on the heat of absorption of CO2 and on the cyclic capacity in DEEA-MAPA blends, Int. J. Greenh. Gas Control. 61, 94–103. [CrossRef] [Google Scholar]
  • Lecomte F., Broutin P., Lebas E. (2009) Le captage du CO2 des technologies pour réduire les Émissions de gaz à effet de serre, Édition technip, IFP publication. [Google Scholar]
  • Mehassouel A., Derriche R., Bouallou C. (2016) A new CO2 absorption data for aqueous solutions of N-methyldiethanolamine + hexylamine, Chem. Eng.Trans. 52, 595–600. [Google Scholar]
  • Mudhasakul S., Ku H.M., Douglas P.L. (2013) A simulation model of a CO2 absorption process with methyldiethanolamine solvent and piperazine as an activator, Int. J. Greenh. Gas Control. 15, 134–141. [CrossRef] [Google Scholar]
  • Nazmul H.S.M. (2005) Techno-Economic study of CO2 captures process for cement plants, Master thesis, University of Waterloo, Ontario, Canada. [Google Scholar]
  • Passalacqua R., Centi G., Perathoner S. (2015) Solar production of fuels from water and Co2: Perspectives and opportunities for a sustainable use of renewable energy, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 70, 799–815. [CrossRef] [Google Scholar]
  • Paul S., Ghoshal A.K., Mandal B. (2009) Kinetics of absorption of carbon dioxide into aqueous blends of 2-(1-piprazinyl)-ethylamine and N-methyldiethanolamine, Chem. Eng. Sci. 64, 1618–1622. [CrossRef] [Google Scholar]
  • Pinto D.D.D., Monteiro J.G.M.-S., Bersas A., Haug-Warberg T., Svendsen H.F. (2013) eNRTL parameter fitting procedure for blended amine systems: MDEA-PZ case study, Energy Procedia 37, 1613–1620. [CrossRef] [Google Scholar]
  • Raynal L., Alix P., Bouillon P.A., Gomez A., de Nailly M.F., Jacquin M., Kittel J., di Lella A., Mougin P., Trapy J. (2011a) The DMX™ process: An original solution for lowering the cost of post-combustion carbon capture, Energy Procedia 4, 779–786. [CrossRef] [Google Scholar]
  • Raynal L., Bouillon P.A., Gomez A., Broutin P. (2011b) From MEA to demixing solvents and future steps, a roadmap for lowering the cost of post-combustion carbon capture, Chem. Eng. J. 171, 742–752. [CrossRef] [Google Scholar]
  • Sharifi A., Omidbakhsh A.E. (2017) Effect of the tower type on the gas sweetening process, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 72, 24. [Google Scholar]
  • Tan M. Sc. (2010) Study of CO2 absorption into thermomorphic lipophilic amine solvents, Ph.D. Dissertation, University of Dortmund, Germany. [Google Scholar]
  • Toro-Molina C., Bouallou C. (2013) Kinetics study and simulation of CO2 absorption into mixed aqueous solutions of methyldiethanolamine and diethanolamine, Chem. Eng. Trans. 35, 319–324. [Google Scholar]
  • Tursunov O., Kustov L., Kustov A. (2017) A brief review of carbon dioxide hydrogenation to methanol over copper and iron based catalysts, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 72, 30. [Google Scholar]
  • Wang L., An S., Li Q., Yu S., Wu S. (2017) Phase change behavior and kinetics of CO2 absorption into DMBA/DEEA solution in a wetted-wall column, Chem. Eng. J. 314, 681–687. [CrossRef] [Google Scholar]
  • Whitman W.G. (1923) Preliminary confirmation of the two-film theory of gas absorption, Chem. Met. Eng. 29, 146–148. [Google Scholar]
  • Xu Z., Wang S., Liu S., Chen C. (2012) Solvent with low critical solution temperature for CO2 capture, Energy Procedia 23, 64–71. [CrossRef] [Google Scholar]
  • Xu Z., Shujuan W., Bo Z., Changhe C. (2013) Study on potential biphasic solvents: Absorption capacity, CO2 loading and reaction rate, Energy Procedia 37, 494–498. [CrossRef] [Google Scholar]
  • Ye Q., Wang X., Lu Y. (2015) Screening and evaluation of novel biphasic solvents for energy-efficient post-combustion CO2 capture, Int. J. Greenh. Gas Control. 39, 205–214. [CrossRef] [Google Scholar]
  • Ye Q., Zhu L., Wang X., Lu Y. (2017) On the mechanisms of CO2 absorption and desorption with phase transitional solvents, Int. J. Greenh. Gas Control. 56, 278–288. [CrossRef] [Google Scholar]
  • Zhang J., Nwani O., Tan Y., Agar D.W. (2011) Carbon dioxide absorption into biphasic amine solvent with solvent loss reduction, Chem. Eng. Res. Des. 89, 1190–1196. [CrossRef] [Google Scholar]
  • Zhang J., Qiao Y., Agar D.W. (2012a) Improvement of lipophilic-amine-basedthermomorphic biphasic solvent for energy-efficient carbon capture, Energy Procedia 23, 92–101. [CrossRef] [Google Scholar]
  • Zhang J., Qiao Y., Agar D.W. (2012b) Intensification of low temperature thermomorphic biphasic amine solvent regeneration for CO2 capture, Chem. Eng. Res. Des. 90, 743–749. [CrossRef] [Google Scholar]
  • Zhang J., Qiao Y., Wang W., Misch R., Hussain K., Agar D.W. (2013) Development of an energy efficient CO2 capture process using thermomorphic biphasic solvents, Energy Procedia 37, 1254–1261. [CrossRef] [Google Scholar]
  • Zoghi A.T., Feyzi F., Zarrinpashneh S. (2012) Experimental investigation on the effect of addition of amine activators to aqueous solutions of N-methyldiethanolamine on the rate of carbon dioxide absorption, Int. J. Greenh. Gas Control. 7, 12–19. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.