Open Access
Oil & Gas Science and Technology - Rev. IFP Energies nouvelles
Volume 73, 2018
Article Number 79
Number of page(s) 8
Published online 18 December 2018
  • Adams J.N., Charrier T. (1985) Drilling engineering: a complete well planning approach , PennWell Publishing Company, Tulsa, Oklahoma, pp. 342–345. [Google Scholar]
  • Atashnezhad A., Wood D.A., Ereidounpour A., Khosravanian R. (2014) Designing and optimizing deviated wellbore trajectories using novel particle swarm algorithms, J. Nat. Gas Sci. Eng. 21 , 1184–1204. [Google Scholar]
  • Dalzell J. (2013) Conventional natural gas supply costs in Western Canada − an update , Canadian Energy Research Institute, 136, 31. [Google Scholar]
  • Han K.H., Kim J.H. (2000) Genetic quantum algorithm and its application to combinatorial optimization problem, in: Proceedings of the 2000 Congress on Evolutionary Computation , IEEE Press, New York, USA, pp. 1354–1360. [CrossRef] [Google Scholar]
  • Karimpour K., Zarghami R., Moosavian M.A., Bahmanyar H. (2016) New fuzzy model for risk assessment based on different types of consequences, Oil Gas Sci. Technol. − Rev. IFP Energies Nouvelles 71 , 17. [Google Scholar]
  • Li P.C., Li S.Y. (2008) Quantum-inspired evolutionary algorithm for continuous spaces optimization, Chin. J. Electron. 17 , 80–84. [Google Scholar]
  • Li P.C., Li S.Y. (2009) Quantum genetic algorithm based on real-coded and objective function's gradient, J. Harbin Inst. Technol. 38 , 1216–1218. [Google Scholar]
  • Ma T., Chen P., Yang C., Zhao J. (2015) Wellbore stability analysis and well path optimization based on the breakout width model and Mogi-Coulomb criterion, J. Pet. Sci. Eng. 135 , 678–701. [Google Scholar]
  • Mansouri V., Khosravanian R., Wood D.A., Aadnoy B.S. (2015) 3-D well path design using a multi-objective genetic algorithm, J. Nat. Gas Sci. Eng. 27 , 219–235. [Google Scholar]
  • Sha L.X. (2013) A self-adaptive quantum genetic algorithm and its application in the drilling parameters optimization , China Petroleum Machinery, pp. 72–74. [Google Scholar]
  • Sha L.X., He Y.Y. (2010) Research and application of a variable step double chains quantum genetic algorithm, Comput. Eng. Appl. 48 , 59–63. [Google Scholar]
  • Sha L.X., He Y.Y. (2012) A novel bloch quantum genetic algorithm and its application of drilling parameters optimization, in: The International Conference on Engineering Technology and Economic Management , pp. 6–9. [Google Scholar]
  • Shokir E.M., Emera M.K., Eid S.M., Wally A.W. (2004) A new optimization model for 3-D well design, Oil Gas Sci. Technol. − Rev. IFP 59 , 255–266. [CrossRef] [Google Scholar]
  • Wood D.A. (2016a) Hybrid cuckoo search optimization algorithms applied to complex wellbore trajectories aided by dynamic, chaos-enhanced, fat-tailed distribution sampling and metaheuristic profiling, J. Nat. Gas Sci. Eng. 34 , 236–252. [Google Scholar]
  • Wood D.A. (2016b) Hybrid bat flight optimization algorithm applied to complex wellbore trajectories highlights the relative contributions of metaheuristic components, J. Nat. Gas Sci. Eng. 32, 211–221. [Google Scholar]
  • Xu S.H., Xu C. (2010) A Novel double chain quantum genetic algorithm and its application, Comput. Appl. Res. 21, 2090–2092. [Google Scholar]
  • Yin P.Y. (2006) Genetic particle swarm optimization for polygonal approximation of digital curves, Pattern Recognit. Image Anal. 16 , 223–233. [CrossRef] [Google Scholar]
  • Zhang G.X., Rong H.N. (2007) Real-Observation Quantum-Inspired Evolutionary Algorithm for a Class of Numerical Optimization Problems, ICCS 2007 , Part IV, LNCS 4490, pp. 989–996. [Google Scholar]
  • Zhang G.X., Li N., Jin W.D., Hu L.Z. (2004) A novel quantum genetic algorithm and its application, ACTA Electron. Sin. 32 , 476–479. [Google Scholar]
  • Zhao Q.H. translation, Nielsen M.A., Chuang I.L. (2004) Quantum Computer and Quantum Information , Tsinghua University Press, pp. 38–58. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.