Open Access
Oil & Gas Science and Technology - Rev. IFP Energies nouvelles
Volume 73, 2018
Article Number 21
Number of page(s) 12
Published online 22 June 2018
  • Abbaspour M., Chapman K.S. (2008) Nonisothermal transient flow in natural gas pipeline, Int. J. Appl. Mech. 5, 3, 031018. [CrossRef] [Google Scholar]
  • Advantica I. (2007) Stoner Pipeline Simulator (SPS) Help and Reference, 9.600 Bent Creek Blvd. [Google Scholar]
  • Alamian R., Behbahani-Nejad M., Ghanbarzadeh A. (2012) A state space model for transient flow simulation in natural gas pipelines, J. Nat. Gas Sci. Eng. 9, 51–59. [CrossRef] [Google Scholar]
  • Andrianov N., Coquel F., Postel M., Tran Q.H. (2007) A relaxation multiresolution scheme for accelerating realistic two‐phase flows calculations in pipelines, Int. J. Numer. Meth. Fluids 54, 2, 207–236. [CrossRef] [Google Scholar]
  • Barley J. (2012) Thermal decoupling: An investigation, PSIG Annual Meeting, Pipeline Simulation Interest Group, Santa Fe, New Mexico. [Google Scholar]
  • Behbahani-Nejad M., Shekari Y. (2010) The accuracy and efficiency of a reduced-order model for transient flow analysis in gas pipelines, J. Petrol. Sci. Eng. 73, 1, 13–19. [CrossRef] [Google Scholar]
  • Benedict M., Webb G.B., Rubin L.C. (1940) An empirical equation for thermodynamic properties of light hydrocarbons and their mixtures I. Methane, ethane, propane and n‐butane, J. Chem. Phys. 8, 4, 334–345. [CrossRef] [Google Scholar]
  • Colebrook C.F. (1939) Turbulent flow in pipes with particular reference to the transition region between the smooth and rough pipe laws, J. Inst. Civil Eng. 11, 4, 133–156. [CrossRef] [Google Scholar]
  • Coquel F., Postel M., Poussineau N., Tran Q.H. (2006) Multiresolution technique and explicit-implicit scheme for multicomponent flows, J. Numer. Math. 14, 3, 187–216. [CrossRef] [Google Scholar]
  • Duan J.M., Wang W., Zhang Y., Zheng L.J. (2013) Energy equation derivation of the oil-gas flow in pipelines, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 68, 2, 341–353. [CrossRef] [Google Scholar]
  • Ebrahimzadeh E., Shahrak M.N., Bazooyar B. (2012) Simulation of transient gas flow using the orthogonal collocation method, Chem. Eng. Res. Des. 90, 11, 1701–1710. [CrossRef] [Google Scholar]
  • Evje S., Flåtten T. (2005) Weakly implicit numerical schemes for a two-fluid model, SIAM J. Sci. Comput. 26, 5, 1449–1484. [CrossRef] [Google Scholar]
  • Flåtten T., Munkejord S.T. (2006) The approximate Riemann solver of Roe applied to a drift-flux two-phase flow model, ESAIM: Math. Model. Numer. Anal. 40, 4, 735–764. [CrossRef] [Google Scholar]
  • Gutiérrez J.A., Moreno P., Naredo J.L., Gutiérrez J.C. (2002) Fast transients analysis of nonuniform transmission lines through the method of characteristics, Int. J. Electr. Power & Energy Syst. 24, 9, 781–788. [CrossRef] [Google Scholar]
  • Helgaker J.F., Müller B., Ytrehus T. (2014) Transient flow in natural gas pipelines using implicit finite difference schemes, J. Offshore Mech. Arct. Eng. 136, 3, 031701. [CrossRef] [Google Scholar]
  • Helgaker J.F., Ytrehus T. (2012) Coupling between continuity/momentum and energy equation in 1D gas flow, Energy Procedia 26, 82–89. [CrossRef] [Google Scholar]
  • Karimpour K., Zarghami R., Moosavian M.A., Bahmanyar H. (2014) New fuzzy model for risk assessment based on different types of consequences, Oil Gas Sci. Technol. 71, 17. [Google Scholar]
  • Keenan P.T. (1996) Collation and upwinding for thermal flow in pipelines: the linearized case, Int. J. Numer. Meth. Fl. 22, 9, 835–849. [CrossRef] [Google Scholar]
  • Kiuchi T. (1994) An implicit method for transient gas flows in pipe networks, Int. J. Heat Fluid Fl. 15, 5, 378–383. [Google Scholar]
  • Jackson M., Percival J., Mostaghimi P., Tollit B., Pavlidis D., Pain C., Gomes J., Elsheikh A.H., Salinas P., Muggeridge A., Blunt M. (2015) Reservoir modeling for flow simulation by use of surfaces, adaptive unstructured meshes, and an overlapping-control-volume finite-element method, SPE Reserv. Eval. Eng. 18, 2, 115–132. [CrossRef] [Google Scholar]
  • Larsen P.M., Hansen N.E. (2014) Computer aided design in control and engineering systems: advanced tools for modern technology, Pergamon Press, New York. [Google Scholar]
  • Li Y.X., Yao G.Z. (2009) Design and operation of gas pipeline, China University of Petroleum Press, Beijing (in Chinese). [Google Scholar]
  • Liang Y.M., Zheng G., Liu H. (2011) Dynamic simulation of natural gas network based on adaptive step, Comput. Eng. Appl. 47, 7, 233–235 (in Chinese). [Google Scholar]
  • Liang J.F., Guo K., Huangpu L.X., Li N., Wang G.P. (2013) Operation analysis of city gas pipelines by the finite volume method, Nat. Gas Ind. 33, 104–108 (in Chinese). [Google Scholar]
  • Luskin M. (1979) An approximation procedure for nonsymmetric, nonlinear hyperbolic systems with integral boundary conditions, SIAM J. Numer. Anal. 16, 1, 145–164. [Google Scholar]
  • Madoliat R., Khanmirza E., Moetamedzadeh H.R. (2016) Transient simulation of gas pipeline networks using intelligent methods, J. Nat. Gas Sci. Eng. 29, 517–529. [CrossRef] [Google Scholar]
  • Pivello M.R., Villar M.M., Serfaty R., Romab A.M., Silveira-Netoa A. (2014) A fully adaptive front tracking method for the simulation of two phase flows, Int. J. Multiphas. Flow 58, 72–82. [CrossRef] [Google Scholar]
  • Ruponen P. (2014) Adaptive time step in simulation of progressive flooding, Ocean Eng. 78, 35–44. [CrossRef] [Google Scholar]
  • Sanaye S., Mahmoudimehr J. (2012) Technical assessment of isothermal and non-isothermal modelings of natural gas pipeline operational conditions, Oil Gas Sci. Technol. 67, 3, 435–449. [Google Scholar]
  • Shampine L.F. (2005) Error estimation and control for ODEs, J. Sci. Comput. 25, 1, 3–16. [CrossRef] [Google Scholar]
  • Tao W.Q. (2000) Advances in computational heat transfer, Science Press, Beijing (in Chinese). [Google Scholar]
  • Tentis E., Margaris D., Papanikas D. (2003) Transient gas flow simulation using an adaptive method of lines, C.R. Mec. 331, 7, 481–487. [CrossRef] [Google Scholar]
  • Vasilyev O.V., Bowman C. (2000) Second-generation wavelet collocation method for the solution of partial differential equations, J. Comput. Phys. 165, 2, 660–693. [CrossRef] [Google Scholar]
  • Wang H., Liu X.J., Zhou W.G. (2011) Transient flow simulation of municipal gas pipelines and networks using semi implicit finite volume method, Procedia Eng. 12, 217–223. [CrossRef] [Google Scholar]
  • Wang J.R., Wang T., Wang J.Z. (2014) Application of π equivalent circuit in mathematic modeling and simulation of gas pipeline, Appl. Mech. Mater. 496, 943–946. [CrossRef] [Google Scholar]
  • Wang P., Yu B., Deng Y.J., Zhao Y. (2015) Comparison study on the accuracy and efficiency of the four forms of hydraulic equations of a natural gas pipeline based on linearized solution, J. Nat. Gas Sci. Eng. 22, 235–244. [CrossRef] [Google Scholar]
  • Wang P., Yu B., Han D., Sun D., Xiang Y. (2018) Fast method for the hydraulic simulation of natural gas pipeline networks based on the divide-and-conquer approach. J. Nat. Gas Sci. Eng. 50, 55–63. [CrossRef] [Google Scholar]
  • Wylie E.B., Stoner M.A., Streeter V.L. (1971) Network: System transient calculations by implicit method, Soc. Petrol. Eng. J. 11, 04, 356–362. [Google Scholar]
  • Yu B., Wang P., Wang L.Y., Xiang Y. (2017) A simulation method for natural gas pipeline networks based on the divide-and-conquer concept, Oil Gas Storage Transp. 36, 1, 75–84 (in Chinese). [Google Scholar]
  • Zhang L. (2016) Simulation of the transient flow in a natural gas compression system using a high-order upwind scheme considering the real-gas behaviors, J. Nat. Gas Sci. Eng. 28, 479–490. [CrossRef] [Google Scholar]
  • Zheng J.G., Chen G.Q., Song F., Ai-Mu Y., Zhao J.L. (2012) Research on simulation model and solving technology of large scale gas pipe network, J. Syst. Simul. 14, 133 (in Chinese). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.