Open Access
Issue
Oil & Gas Science and Technology - Rev. IFP Energies nouvelles
Volume 73, 2018
Article Number 2
Number of page(s) 12
DOI https://doi.org/10.2516/ogst/2017038
Published online 12 January 2018
  • Jafari Behbahani T., Ghotbi C., Taghikhani V., Shahrabadi A. (2015) Experimental study and mathematical modeling of asphaltene deposition mechanism in core samples, Oil Gas Sci. Technol. − Rev. IFP 70, 6, 1051–1074. [CrossRef] [Google Scholar]
  • Buckley J.S. (1998) Wetting alteration of solid surfaces by crude oils and their asphaltenes, Oil Gas Sci. Technol. − Rev. IFP 53, 3, 303–312. [Google Scholar]
  • Karambeigi M.A., Kharrat R. (2014) An investigation of inhibitors performance on asphaltene precipitation due to associated gas injection, Petrol. Sci. Technol. 32, 10, 1213–1218. [CrossRef] [Google Scholar]
  • Kashefi S., Shahrabadi A., Jahangiri S., Lotfollahi M.N., Bagherzadeh, H. (2016) Investigation of the performance of several chemical additives on inhibition of asphaltene precipitation, Energy Sour. Part A Recovery Util. Environ. Eff. 38, 24, 3647–3652. [CrossRef] [Google Scholar]
  • Kashefi S., Shahrabadi A., Lotfollahi M.N., Varamesh, A. (2016) A new polymeric additive as asphaltene deposition inhibitor in CO2 core flooding, Korean J. Chem. Eng. 33, 11, 3273–3280. [CrossRef] [Google Scholar]
  • Marczewski A.W., Szymula M. (2002) Adsorption of asphaltenes from toluene on mineral surface, Colloids Surf. A: Physicochem. Eng. Asp.208, 1, 259–266. [CrossRef] [Google Scholar]
  • Pernyeszi T., Patzko A., Berkesi O., Dékány I. (1998) Asphaltene adsorption on clays and crude oil reservoir rocks, Colloids Surf. A: Physicochem. Eng. Asp. 137, 1, 373–384. [Google Scholar]
  • Dudášová D., Simon S., Hemmingsen P.V., Sjöblom, J. (2008) Study of asphaltenes adsorption onto different minerals and clays: Part 1. Experimental adsorption with UV depletion detection, Colloids Surf. A: Physicochem. Eng. Aspects 317, 1, 1–9. [Google Scholar]
  • Ekholm P., Blomberg E., Claesson P., Auflem I.H., Sjöblom J., Kornfeldt A. (2002) A quartz crystal microbalance study of the adsorption of asphaltenes and resins onto a hydrophilic surface, J. Colloid Interface Sci. 247, 2, 342–350. [CrossRef] [PubMed] [Google Scholar]
  • Abdallah W.A., Taylor S.D. (2007) Surface characterization of adsorbed asphaltene on a stainless steel surface, Nucl. Instrum. Meth. B 258, 1, 213–217. [CrossRef] [Google Scholar]
  • Nassar N.N., Hassan A., Pereira-Almao P. (2011) Metal oxide nanoparticles for asphaltene adsorption and oxidation, Energy Fuels 25, 3, 1017–1023. [CrossRef] [Google Scholar]
  • Nassar N.N., Hassan A., Pereira-Almao P. (2011) Effect of surface acidity and basicity of aluminas on asphaltene adsorption and oxidation, J. Colloid Interface Sci. 360, 1, 233–238. [CrossRef] [PubMed] [Google Scholar]
  • Nassar N.N., Hassan A., Carbognani L., Lopez-Linares F., Pereira-Almao P. (2012) Iron oxide nanoparticles for rapid adsorption and enhanced catalytic oxidation of thermally cracked asphaltenes, Fuel 95, 257–262. [CrossRef] [Google Scholar]
  • Nassar N.N. (2010) Asphaltene adsorption onto alumina nanoparticles: kinetics and thermodynamic studies, Energy Fuels 24, 8, 4116–4122. [CrossRef] [Google Scholar]
  • Hashemi R., Nassar N.N., Pereira-Almao P. (2012) Transport behavior of multimetallic ultradispersed nanoparticles in an oil-sands-packed bed column at a high temperature and pressure, Energy Fuels 26, 3, 1645–1655. [CrossRef] [Google Scholar]
  • Mirzayi B., Shayan N.N. (2014) Adsorption kinetics and catalytic oxidation of asphaltene on synthesized maghemite nanoparticles, J. Petrol. Sci. Eng. 121, 134–141. [CrossRef] [Google Scholar]
  • Kazemzadeh Y., Eshraghi S.E., Kazemi K., Sourani S., Mehrabi M., Ahmadi Y. (2015) Behavior of asphaltene adsorption onto the metal oxide nanoparticles surface and its effect on the heavy oil recovery, Ind. Eng. Chem. Res. 54, 1, 233–239. [Google Scholar]
  • Hashemi S.I., Fazelabdolabadi B., Moradi S., Rashidi A.M., Shahrabadi A., Bagherzadeh H. (2016) On the application of NiO nanoparticles to mitigate in situ asphaltene deposition in carbonate porous matrix, Appl. Nanosci. 6, 1, 71–81. [CrossRef] [Google Scholar]
  • Franco C., Patiño E., Benjumea P., Ruiz M.A., Cortés F.B. (2013) Kinetic and thermodynamic equilibrium of asphaltenes sorption onto nanoparticles of nickel oxide supported on nanoparticulated alumina, Fuel 105, 408–414. [CrossRef] [Google Scholar]
  • Franco C.A., Nassar N.N., Ruiz M.A., Pereira-Almao P., Cortés F.B. (2013) Nanoparticles for inhibition of asphaltenes damage: adsorption study and displacement test on porous media, Energy Fuels 27, 6, 2899–2907. [CrossRef] [Google Scholar]
  • ASTM D6560. (2005) Standard test method for determination of asphaltenes (heptane insolubles) in crude petroleum and petroleum products. Annual Book of ASTM Standards, American Society for Testing and Materials, Philadelphia, PA, 5(3). [Google Scholar]
  • Fan T., Buckley J.S. (2006) Acid number measurements revisited, SPE/DOE Symposium on Improved Oil Recovery, Tulsa, Oklahoma, 22–26 April, SPE Paper 99884-MS. [Google Scholar]
  • Saadatjoo N., Golshekan M., Shariati S., Kefayati H., Azizi P. (2013) Organic/inorganic MCM-41 magnetite nanocomposite as a solid acid catalyst for synthesis of benzo [α] xanthenone derivatives, J. Mol. Catal. A: Chem. 377, 173–179. [CrossRef] [Google Scholar]
  • Yudin I.K., Nikolaenko G.L, Gorodetskii E.E., Kosov V.I., Melikyan V.R., Markhashov E.L., Frot D., Briolant Y. (1998) Mechanisms of asphaltene aggregation in toluene-heptane mixtures, J. Petrol. Sci. Eng. 20, 3, 297–301. [CrossRef] [Google Scholar]
  • Hosseinpour N., Khodadadi A.A., Bahramian A., Mortazavi Y. (2013) Asphaltene adsorption onto acidic/basic metal oxide nanoparticles toward in situ upgrading of reservoir oils by nanotechnology, Langmuir29, 46, 14135–14146. [CrossRef] [PubMed] [Google Scholar]
  • Shayan N.N., Mirzayi B. (2015) Adsorption and removal of asphaltene using synthesized maghemite and hematite nanoparticles, Energy Fuels 29, 3, 1397–1406. [CrossRef] [Google Scholar]
  • Langmuir I. (1916) The constitution and fundamental properties of solids and liquids. Part I. Solids, J. Am. Chem. Soc. 38, 11, 2221–2295. [Google Scholar]
  • Mohammadi M., Akbari M., Fakhroueian Z., Bahramian A., Azin R., Arya S. (2011) Inhibition of asphaltene precipitation by TiO2, SiO2, and ZrO2 nanofluids, Energy Fuels 25, 7, 3150–3156. [CrossRef] [Google Scholar]
  • Haddad Z., Abid C., Oztop H.F., Mataoui A. (2014) A review on how the researchers prepare their nanofluids, Int. J. Therm. Sci. 76, 168–189. [CrossRef] [Google Scholar]
  • Jafari Behbahani T., Ghotbi C., Taghikhani V., Shahrabadi A. (2012) Investigation on asphaltene deposition mechanisms during CO2 flooding processes in porous media: a novel experimental study and a modified model based on multilayer theory for asphaltene adsorption, Energy Fuels 26, 8, 5080–5091. [CrossRef] [Google Scholar]
  • Papadimitriou N.I., Romanos G.E., Charalambopoulou G. Ch., Kainourgiakis M.E., Katsaros F.K., Stubos A.K. (2007) Experimental investigation of asphaltene deposition mechanism during oil flow in core samples, J. Petrol. Sci. Eng. 57, 3, 281–293. [CrossRef] [Google Scholar]
  • Bagherzadeh H., Ghazanfari M.H., Kharrat R., Rashtchian D. (2014) Experimental investigation and modeling of permeability impairment mechanisms due to asphaltene precipitation under CO2 injection conditions, Energy Sour. Part A Recovery Util. Environ. Eff. 36, 6, 591–604. [CrossRef] [Google Scholar]
  • Wang S., Civan F. (2001) Productivity decline of vertical and horizontal wells by asphaltene deposition in petroleum reservoirs, SPE International Symposium on Oilfield Chemistry, Houston, Texas, 13–16 Feb., SPE paper 64991-MS. [Google Scholar]
  • Kashefi S., Lotfollahi M.N., Shahrabadi A. (2017) An investigation of asphaltene deposition mechanisms during natural depletion process by a two phase modeling using genetic algorithm technique, J. Petrol. Sci. Technol. 7, 2, 12–20. [Google Scholar]
  • Selvin R., Roselin L.S., Khayyat S.A., Umar A. (2013) Hierarchical zeolite beta: An efficient and eco-Friendly nanocatalyst for the friedel-crafts acylation of toluene, J. Nanosci. Nanotechnol. 13, 6, 4415–4420. [CrossRef] [PubMed] [Google Scholar]
  • Nassar N.N., Hassan A., Luna G., Pereira-Almao P. (2013) Kinetics of the catalytic thermo-oxidation of asphaltenes at isothermal conditions on different metal oxide nanoparticle surfaces, Catal. Today207, 127–132. [CrossRef] [Google Scholar]
  • Roque C., Chauveteau G., Renard M., Thibault G., Bouteca M., Rochon J. (1995) Mechanisms of formation damage by retention of particles suspended in injection water, SPE European Formation Damage Conference, Hague, Netherlands, 15–16 May, SPE paper 30110-MS. [Google Scholar]
  • Bagheri M., Kharrat R., Ghotbi C. (2011) Experimental investigation of the asphaltene deposition process during different production schemes, Oil Gas Sci. Technol. − Rev. IFP 66, 3, 507–519. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.