Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 72, Number 1, January–February 2017
Article Number 1
Number of page(s) 14
DOI https://doi.org/10.2516/ogst/2016022
Published online 09 January 2017
  • Alvarez J.M., Rivas H.J., Rossen W.R. (2001) Unified model for steady-state foam behavior at high and low foam qualities, SPE J. 6, 3, 325–333. [CrossRef] [Google Scholar]
  • Bernadiner M.G., Thompson K.E., Fogler H.S. (1992) Effect of foams used during carbonate acidizing, SPE Prod Eng. 7, 04, 350–356. [CrossRef] [Google Scholar]
  • Casteel J.F., Djabbarah N.F. (1988) Sweep improvement in CO2 flooding by use of foaming agents, SPE Reserv. Eng. 3, 4, 1186–1192. [CrossRef] [Google Scholar]
  • Chen M., Yortsos Y.C., Rossen W.R. (2005) Insights on foam generation in porous media from pore-network studies, Colloids Surf. A 256, 2-3, 181–189. [CrossRef] [Google Scholar]
  • Ebrahimi B., Mostaghimi P., Gholamian H., Sadeghy K. (2016) Viscous fingering in yield stress fluids: a numerical study, J. Eng. Math. 97, 01, 161–176. [CrossRef] [Google Scholar]
  • Falcone J.S., Krumrine P.H., Schweiker G.C. (1982) The use of inorganic sacrificial agents in combination with surfactants in enhanced oil recovery, J. Am. Oil Chem. Soc. 59, 10, 826A–832A. [CrossRef] [Google Scholar]
  • Fjelde I., Zuta J., Hauge I. (2009) Retention of CO2-foaming agents on chalk: effects of surfactant structure, temperature, and residual-oil saturation, SPE Reservoir Eval. Eng. 12, 03, 419–426. [CrossRef] [Google Scholar]
  • Friedmann F., Chen W.H., Gauglitz P.A. (1991) Experimental and simulation study of high-temperature foam displacement in porous media, Soc. Pet. Eng. J. 6, 1, 37–45. [CrossRef] [Google Scholar]
  • Gauglitz P.A., Friedmann F., Kam S.I., Rossen W.R. (2002) Foam generation in homogeneous porous media, Chem. Eng. Sci. 57, 19, 4037–4052. [CrossRef] [Google Scholar]
  • Gogoi S.B. (2011) Adsorption-desorption of surfactant for enhanced oil recovery, Transport Porous Med. 90, 589–604. [CrossRef] [Google Scholar]
  • Harris P.C. (1995) A comparison of mixed gas foams with N2 and CO2 foam fracturing fluids on a flow Loop viscometer, SPE Prod. Facil. 10, 03, 197–203. [CrossRef] [Google Scholar]
  • Haugen A., Mani N., Svenningsen S., Brattekas B., Graue A., Ersland G., Ferno M.A. (2014) Miscible and immiscible foam injection for mobility control and EOR in fractured oil-wet carbonate rocks, Transport Porous Med. 104, 1, 109–131. [CrossRef] [Google Scholar]
  • Jian G., Hou Q., Chen S., Wang D., Luo Y., Wang Z., Zhu Y. (2012) Comparative study of extensional viscoelasticity properties of liquid films and stability of bulk foams, J. Dispersion Sci. Technol. 34, 10, 1382–1391. [CrossRef] [Google Scholar]
  • Jonas T.M., Chou S.I., Vasicek S.L. (1990) Evaluation of a CO2 foam field trial: Rangley Weber Sand Unit, 65th SPE-ATC, 23-26 September, New Orleans, LA. [Google Scholar]
  • Khatib Z.I., Hirasaki G.J., Falls A.H. (1988) Effects of capillary pressure on coalescence and phase mobilities in foams flowing through porous media, SPE Reserv. Eng. 3, 3, 919–926. [CrossRef] [Google Scholar]
  • Kutay S.M., Schramm L.L. (2004) Structure/performance relation for surfactant and polymer stabilized foams in porous media, J. Can. Pet. Technol. 43, 19–28. [CrossRef] [Google Scholar]
  • Le V.Q., Nguyen Q.P., Sanders A. (2008) A novel foam concept with CO2 dissolved surfactants, SPE/DOE Symposium on Improved Oil Recovery, 20-23 April, Tulsa, OK. [Google Scholar]
  • Majidaie M., Khanifar A., Onur M., Tan I.M. (2012) A simulation study of chemically enhanced water altering gas (CWAG) injection, SPE EOR Conference at Oil and Gas West Asia, 16-18 April, Muscat, Oman. [Google Scholar]
  • Ozbayoglu M.E., Kuru E., Miska S., Takach N. (2002) A comparative study of hydraulic models for foam drilling, J. Can. Petrol. Technol. 41, 06, 52–61. [CrossRef] [Google Scholar]
  • Prigiobbe V., Worthen A.J., Johnston K.P., Huh C., Bryant S.L. (2016) Transport of nanoparticle-stabilized CO2-foam in porous media, Transport Porous Med. 111, 01, 265–285. [CrossRef] [MathSciNet] [Google Scholar]
  • Schramm L.L., Novosad J.J. (1990) Micro-visualization of foam interaction with a crude oil, Colloids Surf. 46, 1, 21–43. [CrossRef] [Google Scholar]
  • Tay A., Oukhemanou F., Wartenbery N., Moreau P., Delbos A., Tabary R. (2015) Adsorption inhibitors: a new route to mitigate adsorption in chemical enhanced oil recovery, SPE Asia Pacific Enhanced Oil Recovery Conference, 11-13 August, Kuala. [Google Scholar]
  • Thorat R., Bruining H. (2016) Foam Flow Experiments. I. Estimation of the bubble generation-coalescence function, Transp. Porous Med. 112, 01, 53–76. [CrossRef] [Google Scholar]
  • Wang J., Ge J., Zhang G., Ding B., Zhang L., Jin L. (2011) Low gas-liquid ratio foam flooding for conventional heavy oil, Petroleum Science 8, 3, 335–344. [CrossRef] [Google Scholar]
  • Worthen A., Bryant S., Huh C., Johnston K.P. (2013) Carbon dioxide-in-water foams stabilized with nanoparticles and surfactant acting in synergy, AIChE J. 59, 9, 3490–3501. [CrossRef] [Google Scholar]
  • Xu X., Saeedi A., Liu K. (2017) Experimental study on a novel foaming formula for CO2 foam flooding, J. Energy Resour. - ASME 139, 0229021–0229029. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.