Dossier: Methodology for Process Development at IFP Energies nouvelles
Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 71, Number 3, May–June 2016
Dossier: Methodology for Process Development at IFP Energies nouvelles
Article Number 42
Number of page(s) 24
Published online 26 August 2015
  • Alvarez A., Ramirez S., Ancheyta J., Rodriguez L.M. (2007) Key role of reactor internal in hydroprocessing of oil fraction, Energy Fuels 21, 1731–1740. [CrossRef]
  • Antos G.J., Aitani A.M. (2004) Catalytic Naphtha Reforming, Marcel Dekker, New York. [CrossRef]
  • Attou A., Ferschneider G. (2000) A two-fluid hydrodynamic model for the transition between trickle an pulse flow in a cocurrent gas-liquid packed-bed reactor, Chem. Eng. Sci. 55, 491–511. [CrossRef]
  • Augier F., Laroche C., Brehon E. (2008) Application of computational fluid dynamics to fixed bed adsorption calculations: Effect of hydrodynamics at laboratory and industrial scale, Separation and Purification Technology 63, 466–474. [CrossRef]
  • Augier F., Idoux F., Delenne J.Y. (2010a) Numerical simulations of transfer and transport properties inside packed beds of spherical particles, Chem. Eng. Sci. 65, 3, 1055–1064. [CrossRef]
  • Augier F., Koudil A., Royon-Lebeaud A., Muszynski L., Yanouri Q. (2010b) Numerical approach to predict wetting and catalyst efficiencies inside trickle bed reactors, Chem. Eng. Sci. 65, 1, 255–260. [CrossRef]
  • Bazer-Bachi F., Augier F., Santos B. (2011) 1D and 2D simulations of partially wetted catalyst particles: A focus on heat transfer limitations, Chem. Eng. Sci. 66, 1953–1961. [CrossRef]
  • Bazer-Bachi F., Haroun Y., Augier F., Boyer C. (2013) Experimental evaluation of distributor technologies for trickle-bed reactors, Ind. Eng. Chem. Res. 52, 11189–11197. [CrossRef]
  • Boisson N., Malin M.R. (1996) The numerical prediction of two-phase flow in bubble columns, Int. J. Numerical Methods Fluids 23, 12, 1289–1310. [CrossRef]
  • Boivin M., Simonin O., Squires K.D. (2000) On the prediction of gas-solid flows with two-way coupling using large eddy simulation, Phys. Fluids 12, 8, 2080–2090. [CrossRef]
  • Boyer C., Koudil C., Chen P., Dudukovic M.P. (2005) Study of liquid spreading from a point source in a trickle-bed via gamma-ray tomography and CFD simulation, Chem. Eng. Sci. 60, 22, 6279–6288. [CrossRef]
  • Braga M. (2013) Étude des phénomènes de transfert et de l’hydrodynamique dans des réacteurs agités à panier catalytique, PhD Dissertation, Université Claude Bernard, Lyon, France.
  • Capelle M., Deves J.-M., Hoffmann F., Thery M. (2000) Process for regenerating a catalyst for the production of aromatic compounds or for reforming, with improved oxychlorination, US patent 6, 133, 183.
  • Chalermsinsuwan B., Piumsomboon P., Gidaspow D. (2009a) Kinetic theory based computation of PSRI riser: Part I-Estimate of mass transfer coefficient, Chem. Eng. Sci. 64, 6, 1195–1211. [CrossRef]
  • Chalermsinsuwan B., Piumsomboon P., Gidaspow D. (2009b) Kinetic theory based computation of PSRI riser: Part II- Computation of mass transfer coefficient with chemical reaction, Chem. Eng. Sci. 64, 6, 1212–1222. [CrossRef]
  • Charpentier J.-C. (2009) Perspective on multiscale methodology for product design and engineering, Comput. Chem. Eng. 33, 936–946. [CrossRef]
  • Chen P., Dudukovic M.P., Sanyal J. (2005) Three-dimensional simulation of bubble column flows with coalescence and breakup, AIChE J. 51, 696–712. [CrossRef]
  • Chen X., Closmann F., Rochelle G.T. (2011) Accurate screening of amines by the Wetted Wall Column, Energy Procedia 4, 101–108. [CrossRef]
  • Cooper B.H., Donnis B.B.L., Moyse B. (1986) Oil Gas J. 8, December, 39–44.
  • Decoodt X., Plais C., Bazer-Bachi F. (2014) Continuous catalyst regeneration reactor with a chamber for mixing gas and distributing gas in the oxychlorination zone, US patent 2014/0027348.
  • Deen N.G., van Sint Annaland M., Van der Hoef M.A., Kuipers J.A.M. (2007) Review of discrete particle modeling of fluidized beds, Chem. Eng. Sci. 62, 1-2, 28–44. [CrossRef]
  • Derouin C., Nevicato D., Forissier M., Wild G., Bernard J.R. (1997) Hydrodynamics of riser units and their impact on FCC operation, Ind. Eng. Chem. Res. 36, 4504–4515. [CrossRef]
  • Dry M.E. (2002) The Fischer–Tropsch process: 1950–2000, Catal. Today 71, 227–241. [CrossRef]
  • Forni L. (1997) Laboratory reactors, Catal. Today 34, 353–367. [CrossRef]
  • Forret A., Schweitzer J.-M., Gauthier T., Krishna R., Schweich D. (2003) Influence of scale on the hydrodynamics of bubble column reactors: An experimental study in columns of 0.1, 0.4 and 1 m diameters, Chem. Eng. Sci. 58, 719–724. [CrossRef]
  • Fourati M., Roig V., Raynal L. (2013) Liquid dispersion in packed columns: experiments and numerical modeling, Chem. Eng. Sci. 100, 266–278. [CrossRef]
  • Gavi E., Marchisio D., Barresi A.A., Olsen M.G., Fox R.O. (2010) Turbulent precipitation in micromixers: CFD simulation and flow field validation, Chem. Eng. Res. Design 88, 9, 1182–1193. [CrossRef]
  • Gidaspow D. (1994) Multiphase Flow and Fluidization: Continuum and Kinetic Theory Description, Academic Press, Boston.
  • Ginestra J.C., Jackson R. (1985) Pinning of a bed of particles in a vertical channel by a cross flow of gas, Ind. Eng. Chem. Fundam. 24, 121–128. [CrossRef]
  • Greenwood A.R. (1987) Catalyst regeneration apparatus, US patent 4, 687, 637.
  • Guedes de Carvalho J.R.F., Delgado J.M.P.Q. (2001) Radial dispersion in liquid flow through packed beds for 50<Sc<750 and 103<Pem<105, Fifth World Conference on Experimental Heat Transfer, Fluid Mechanics Thermodynamics.
  • Gupta R.K., Kumara V., Srivastava V.K. (2007) A new generic approach for the modeling of fluid catalytic cracking (FCC) riser reactor, Chem. Eng. Sci. 62, 4510–4528. [CrossRef]
  • Haroun Y., Legendre D., Raynal L. (2010) Volume of fluid method for interfacial reactive mass transfer: Application to stable liquid film, Chem. Eng. Sci. 65, 10, 2896–2909. [CrossRef]
  • Haroun Y., Augier F. (2014) Device for injecting and mixing fluids in a downward-flow reactor, US patent 2014/0224707.
  • Haroun Y., Raynal L. (2015) Use of Computational Fluid Dynamics for absorption packed column design, Oil Gas Sci. Technol. DOI: 10.2516/ogst/2015027.
  • Heidari A., Hashemabadi S.H. (2013) Numerical evaluation of the gas-liquid interfacial heat transfer in the trickle flow regime of packed beds at the micro and meso-scale, Chem. Eng. Sci. 104, 18, 674–689. [CrossRef]
  • Hills J.H. (1974) Radial, non-uniformity of velocity and voidage in bubble column, Trans. Inst. Chem. Eng. 52, 1–9.
  • Hong H.-S., Cai Z.-J., Li J.-Q., Shi D.-S., Wan W.-Q., Li L. (2014) Simulation of gas-inducing reactor couples gas-liquid mass transfer and biochemical reaction, Biochemical Eng. J. 91, 1–9. [CrossRef]
  • Horgue P., Augier F., Duru P., Quintard M., Prat M. (2013) Arrays of cylinders as an experimental and numerical laboratory for the study of trickling and pulsing flows, Chem. Eng. Sci. 102, 335–345. [CrossRef]
  • Jiang J., Wu J., Zhang J., Poncin S., Li H.Z. (2014) Multiscale hydrodynamic investigation to intensify the biogas production in upflow anaerobic reactors, Bioresource Tech. 155, 1–7. [CrossRef]
  • Jiradilok V., Gidaspow D., Damronglerd S., Koves W.J., Mostofi R. (2006) Kinetic theory based CFD simulation of turbulent fluidization of FCC particles in a riser, Chem. Eng. Sci. 61, 17, 5544–5559. [CrossRef]
  • Kataoka H., Takeuchi H., Nakao K., Yagi H., Tadaki T., Otake T. (1979) Mass transfer in a large bubble column, J. Chem. Eng. Japan 12, 2, 105–110. [CrossRef]
  • Kirillov V.A., Mikhailova I.A., Fadeyev S.I., Korolev V.K. (2002) Critical phenomena of an exothermic reaction proceeding on a partially wetted porous catalyst grain, Combustion, Explosion and Shock Waves 38, 508–517. [CrossRef]
  • Koide K., Morooka S., Ueyama K., Matsuura A., Yamashita F., Iwamoto S., Kato Y., Inoue H., Shigeta M., Suzuki S., Akehata T. (1979) Behavior of bubbles in large scale bubble column, J. Chem. Eng. Japan 12, 2, 98–104. [CrossRef]
  • Kojima E., Unno H., Sato Y., Chida T., Imai H., Endo K., Inoue I., Kobayashi J., Kaji H., Nakanishi H., Yamamoto K. (1980) Liquid phase velocity in a 5.5 m diameter bubble column, J. Chem. Eng. Japan 13, 1, 16–21. [CrossRef]
  • Krishna R., van Baten J.M., Ellenberger J., Higler A.P., Taylor R. (1999a) CFD simulations of sieve tray hydrodynamics, Chem. Eng. Res. Design 77, A7, 639–646. [CrossRef]
  • Krishna R., Urseanu M.I., van Baten J.M., Ellenberger J. (1999b) Influence of scale on the hydrodynamics of bubble columns operating in churn-turbulent regime: experiments vs. Eulerian simulations, Chem. Eng. Sci. 54, 4903–4911. [CrossRef]
  • Krishna R., van Baten J.M., Urseanu M.I. (2000) Three-phase Eulerian simulations of bubble column reactors operating in the churn-turbulent regime: a scale up strategy, Chem. Eng. Sci. 55, 16, 3275–3286. [CrossRef]
  • Krishna R., van Baten J.M. (2001) Eulerian simulations of bubble columns operating at elevated pressures in the churn turbulent flow regime, Chem. Eng. Sci. 56, 21-22, 6249–6258. [CrossRef]
  • Krishna R., van Baten J.M. (2002) Scaling up bubble column reactors with highly viscous liquid phase, Chem. Eng. Tech. 25, 10, 1015–1020. [CrossRef]
  • Krishna R., van Baten J.M. (2003) Modelling sieve tray hydraulics using computational fluid dynamics, Chem. Eng. Res. Design 81, A1, 27–38. [CrossRef]
  • Kuipers J.A.M., van Swaaij W.P.M. (1997) Application of computational fluid dynamics to chemical reaction engineering, Rev. Chem. Eng. 13, 3, 1–118. [CrossRef]
  • Lappalainen K., Manninen M., Alopaeus V. (2009) CFD modeling of radial spreading of flow in trickle-bed reactors due to mechanical and capillary dispersion, Chem. Eng. Sci. 64, 207–218. [CrossRef]
  • Lappin A., Lübbert A. (1994) Numerical simulation of the dynamics of two-phase gas-liquid flows in bubble columns, Chem. Eng. Sci. 49, 21, 3661–3674. [CrossRef]
  • Larachi F., Desvigne D., Donnat L., Schweich D. (2006) Simulating the effects of liquid circulation in bubble columns with internals, Chem. Eng. Sci. 61, 4195–4206. [CrossRef]
  • Larachi F., Hannaoui R., Horgue P., Augier F., Haroun Y., Youssef S., Rosenberg E., Prat M., Quintard M. (2014) X-ray micro-tomography and pore network modeling of single-phase fixed-bed reactors, Chem. Eng. J. 240, 290–306. [CrossRef]
  • Li X., Yang N., Sun Y., Zhang L., Li X., Jiang B. (2014) Computational Fluid Dynamics Modeling of Hydrodynamics of a New Type of Fixed Valve Tray, Ind. Eng. Res. 53, 1, 379–389. [CrossRef]
  • Lopes G.C., Rosa L.M., Mori M., Nunhez J.R., Martignoni W.P. (2011) Three-dimensional modeling of fluid catalytic cracking industrial riser flow and reactions, Comput. Chem. Eng. 35, 2159–2168. [CrossRef]
  • Luo H., Svendsen H.F. (1996) Theoretical model for drop and bubble breakup in turbulent dispersions, AICHE J. 42, 5, 1225–1233. [CrossRef]
  • Luo S.J., Fei W.Y., Song X.Y., Li H.Z. (2008) Effect of channel opening angle on the performance of structured packings, Chem. Eng. J. 144, 2, 227–234. [CrossRef]
  • Luo X., Hartono A., Svendsen H.F. (2012) Comparative kinetics of carbon dioxide absorption in unloaded aqueous monoethanolamine solutions using wetted wall and string of discs columns, Chem. Eng. Sci. 82, 31–43. [CrossRef]
  • Magnico P., Fongarland P. (2006) CFD simulations of two stirred tank reactors with stationary catalytic basket, Chem. Eng. Sci. 61, 1217–1236. [CrossRef]
  • Mahoney J.A., Robinson K.K., Myers E.C. (1978) Catalyst evaluation with the gradientless reactor, Chemtech. 8, N12, 758–763.
  • Maiti R.N., Nigam K.D.P. (2007) Gas-Liquid distributors for trickle-bed reactors: A review, Ind. Eng. Chem. Res. 46, 6164–6182. [CrossRef]
  • Marcandelli C., Lamine A.S., Bernard J.R., Wild G. (2000) Liquid distribution in trickle-bed reactor, Oil Gas Sci. Technol. 55, 407–415. [CrossRef] [EDP Sciences]
  • Mehmood N., Olmos E., Marchal P., Goergen J.-L., Delaunay S. (2010) Relation between pristinamycins production by Streptomyces pristinaespiralis, power dissipation and volumetric gas-liquid mass transfer coefficient, kLa, Process Biochemistry 45, 11, 1779–1786. [CrossRef]
  • Mitrovic M., Pitault I., Forissier M., Simoens S., Ronze D. (2005) Liquid-solid mass transfer in a three-phase stationary catalytic basket reactor, AIChE J. 51, 1747–1757. [CrossRef]
  • Moula G., Nastoll W., Simonin O., Andreux R. (2013) Multiscale Study of Reactive Dense Fluidized Bed for FCC Regenerator, Oil Gas Sci. Technol. 68, 6, 1073–1092. [CrossRef] [EDP Sciences]
  • Neri A., Gidaspow D. (2000) Riser hydrodynamics: Simulation using kinetic theory, AIChE J. 46, 1, 52–67. [CrossRef]
  • Ng K.M., Chu C.F. (1987) Trickle-Bed Reactors, Chem. Eng. Prog. 83, 11, 55–63.
  • Nijemeisland M., Dixon A.G. (2004) CFD study of fluid flow and wall heat transfer in a fixed bed of spheres, AIChE J. 50, 5, 906–921. [CrossRef]
  • Olmos E., Gentric C., Vial C., Wild G., Midoux N. (2001) Numerical simulation of multiphase flow in bubble column reactors. Influence of bubble coalescence and break-up, Chem. Eng. Sci. 56, 21-22, 6359–6365. [CrossRef]
  • Oryx GTL (2015)
  • Perego C., Peratello S. (1999) Experimental methods in catalytic kinetics, Catal. Today 52, 133–145. [CrossRef]
  • Petre C.F., Larachi F., Illiuta I., Grandjean B.P.A. (2003) Pressure drop through structured packings: breakdown into the contributing mechanisms by CFD modeling, Chem. Eng. Sci. 58, 163–177. [CrossRef]
  • Pitault I., Fongarland P., Mitrovic M., Ronze D., Forissier M. (2004) Choice of laboratory scale reactors for HDT kinetic studies or catalyst tests, Catal. Today 98, 31–42. [CrossRef]
  • Pitault I., Fongarland P., Koepke D., Mitrovic M., Ronze D., Forissier M. (2005) Gas–liquid and liquid–solid mass transfers in two types of stationary catalytic basket laboratory reactor, Chem. Eng. Sci. 60, 6240–6253. [CrossRef]
  • Raynal L. (2001) Simulation numérique des colonnes à bulles, IFP Internal Report No. 56049.
  • Raynal L., Harter I. (2001) Studies of Gas-Liquid flow through distributing devices using VOF-CFD simulations, Chem. Eng. Sci. 56, 6385–6391. [CrossRef]
  • Raynal L., Forret A., Schweitzer J.-M. (2001) Simulation numérique Euler/Euler de l’hydrodynamique de colonnes à bulles, in Récents progrès en Génie des Procédés, Lavoisier Tech. et Doc. Ed. 15, 227–234.
  • Raynal L. (2005) Use of CFD for applications in the oil and gas industry, Revue de la Houille Blanche 5, 75–78. [CrossRef] [EDP Sciences]
  • Raynal L., Gomez A., Caillat B., Haroun Y. (2013) CO2 Capture Cost Reduction: use of a Multiscale Simulations Strategy for a Multiscale Issue, Oil Gas Sci. Technol. 68, 6, 1093–1108. [CrossRef] [EDP Sciences]
  • Santos-Moreau V., Brunet-Errard L., Rolland M. (2012) Numerical CFD simulation of a batch stirred tank reactor with stationary catalytic basket, Chem. Eng. J. 207-208, 596–606. [CrossRef]
  • Sanyal J., Marchisio D.L., Fox R.O., Dhanasekharan K. (2005) On the comparison between population balance models for CFD simulation of bubble columns, Ind. Eng. Chem. Res. 44, 14, 5063–5072. [CrossRef]
  • Schweitzer J.-M. (2003) Personal communication.
  • Schwidder S., Schnitzlein K. (2012) A new model for the design and analysis of trickle bed reactors, Chem. Eng. J. 207-208, 758–765. [CrossRef]
  • Sederman A.J., Gladden L.F. (2001) Magnetic resonance imaging as a quantitative probe of gas-liquid distribution and wetting efficiency in trickle-bed reactors, Chem. Eng. Sci. 56, 8, 2615–2628. [CrossRef]
  • Servia A., Laloue N., Grandjean J., Rode S., Roizard C. (2014) Modeling of the CO2 Absorption in a Wetted Wall Column by Piperazine Solutions, Oil Gas Sci. Technol. 69, 5, 885–902. [CrossRef] [EDP Sciences]
  • Solomenko Z., Haroun Y., Fourati M., Larachi F., Boyer C., Augier F. (2015) Liquid spreading in trickle-bed reactors: Experiments and numerical simulations using Eulerian-Eulerian two-fluid approach, Chem. Eng. Sci. 126, 698–710. [CrossRef]
  • Spogis N., Nunhez J.R. (2009) Design of a High-Efficiency Hydrofoil Through the Use of Computational Fluid Dynamics and Multiobjective Optimization, AIChE J. 55, 7, 1723–1735. [CrossRef]
  • Tosun G. (1984) A study of cocurrent downflow of nonfoaming gas-liquid systems in a packed bed. 2. Pressure drop: Search for a correlation, Ind. Eng. Chem. Process Des. Dev. 23, 35–39. [CrossRef]
  • Trambouze P. (1993) Computational Fluid Dynamics applied to Chemical Reaction Engineering, Revue de l’Institut Français du Pétrole 48, 6, 595–613.
  • van Baten J.M., Krishna R. (2004) Eulerian simulation strategy for scaling up a bubble column slurry reactor for Fischer-Tropsch synthesis, Ind. Eng. Chem. Res. 43, 16, 4483–4493. [CrossRef]
  • van der Hoef M.A., Annaland M.V., Kuipers J.A.M. (2004) Computational fluid dynamics for dense gas-solid fluidized beds: a multi-scale modeling strategy, Chem. Eng. Sci. 59, 22-23, 5157–5165. [CrossRef]
  • van Houwelingen A.J., Kok S., Nicol W. (2010) Effectiveness Factors for Partially Wetted Catalysts, Ind. Eng. Chem. Res. 49, 17, 8114–8124. [CrossRef]
  • Wang Y., Jinwen C., Larachi F. (2013) Modelling and simulation of trickle-bed reactors using computational fluid dynamics: a state-of-the-art review, The Canadian Journal of Chemical Engineering 91, 136–180. [CrossRef]
  • Whitaker S. (1999) The method of volume averaging, theory and applications of transport in porous media, Kluwer Academic Publishers, Dordrecht, The Netherlands. [CrossRef]
  • Zehner P. (1986) Momentum, mass and heat transfer in bubble columns. Part 1. Flow model of the bubble column and liquid velocities, Int. Chem. Eng. 26, 22.
  • Zhenyuan W., Zhenmin C., Zibin H., Kun Y. (2013) Intensified Gas−Liquid Mixing in a Quench Box under the Driving of Super gravitational Swirling Flow, Ind. Eng. Chem. Res. 52, 12802–12811. [CrossRef]
  • Zou R. (1995) The packing of spheres in a cylindrical container: The thickness effect, Chem. Eng. Sci. 50, 9, 1504–1507. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.