Dossier: Methodology for Process Development at IFP Energies nouvelles
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 71, Number 3, May–June 2016
Dossier: Methodology for Process Development at IFP Energies nouvelles
Article Number 42
Number of page(s) 24
DOI https://doi.org/10.2516/ogst/2015019
Published online 26 August 2015
  • Alvarez A., Ramirez S., Ancheyta J., Rodriguez L.M. (2007) Key role of reactor internal in hydroprocessing of oil fraction, Energy Fuels 21, 1731–1740. [CrossRef] [Google Scholar]
  • Antos G.J., Aitani A.M. (2004) Catalytic Naphtha Reforming, Marcel Dekker, New York. [CrossRef] [Google Scholar]
  • Attou A., Ferschneider G. (2000) A two-fluid hydrodynamic model for the transition between trickle an pulse flow in a cocurrent gas-liquid packed-bed reactor, Chem. Eng. Sci. 55, 491–511. [CrossRef] [Google Scholar]
  • Augier F., Laroche C., Brehon E. (2008) Application of computational fluid dynamics to fixed bed adsorption calculations: Effect of hydrodynamics at laboratory and industrial scale, Separation and Purification Technology 63, 466–474. [CrossRef] [Google Scholar]
  • Augier F., Idoux F., Delenne J.Y. (2010a) Numerical simulations of transfer and transport properties inside packed beds of spherical particles, Chem. Eng. Sci. 65, 3, 1055–1064. [CrossRef] [Google Scholar]
  • Augier F., Koudil A., Royon-Lebeaud A., Muszynski L., Yanouri Q. (2010b) Numerical approach to predict wetting and catalyst efficiencies inside trickle bed reactors, Chem. Eng. Sci. 65, 1, 255–260. [CrossRef] [Google Scholar]
  • Bazer-Bachi F., Augier F., Santos B. (2011) 1D and 2D simulations of partially wetted catalyst particles: A focus on heat transfer limitations, Chem. Eng. Sci. 66, 1953–1961. [CrossRef] [Google Scholar]
  • Bazer-Bachi F., Haroun Y., Augier F., Boyer C. (2013) Experimental evaluation of distributor technologies for trickle-bed reactors, Ind. Eng. Chem. Res. 52, 11189–11197. [CrossRef] [Google Scholar]
  • Boisson N., Malin M.R. (1996) The numerical prediction of two-phase flow in bubble columns, Int. J. Numerical Methods Fluids 23, 12, 1289–1310. [CrossRef] [Google Scholar]
  • Boivin M., Simonin O., Squires K.D. (2000) On the prediction of gas-solid flows with two-way coupling using large eddy simulation, Phys. Fluids 12, 8, 2080–2090. [CrossRef] [Google Scholar]
  • Boyer C., Koudil C., Chen P., Dudukovic M.P. (2005) Study of liquid spreading from a point source in a trickle-bed via gamma-ray tomography and CFD simulation, Chem. Eng. Sci. 60, 22, 6279–6288. [CrossRef] [Google Scholar]
  • Braga M. (2013) Étude des phénomènes de transfert et de l’hydrodynamique dans des réacteurs agités à panier catalytique, PhD Dissertation, Université Claude Bernard, Lyon, France. [Google Scholar]
  • Capelle M., Deves J.-M., Hoffmann F., Thery M. (2000) Process for regenerating a catalyst for the production of aromatic compounds or for reforming, with improved oxychlorination, US patent 6, 133, 183. [Google Scholar]
  • Chalermsinsuwan B., Piumsomboon P., Gidaspow D. (2009a) Kinetic theory based computation of PSRI riser: Part I-Estimate of mass transfer coefficient, Chem. Eng. Sci. 64, 6, 1195–1211. [CrossRef] [Google Scholar]
  • Chalermsinsuwan B., Piumsomboon P., Gidaspow D. (2009b) Kinetic theory based computation of PSRI riser: Part II- Computation of mass transfer coefficient with chemical reaction, Chem. Eng. Sci. 64, 6, 1212–1222. [CrossRef] [Google Scholar]
  • Charpentier J.-C. (2009) Perspective on multiscale methodology for product design and engineering, Comput. Chem. Eng. 33, 936–946. [CrossRef] [Google Scholar]
  • Chen P., Dudukovic M.P., Sanyal J. (2005) Three-dimensional simulation of bubble column flows with coalescence and breakup, AIChE J. 51, 696–712. [CrossRef] [Google Scholar]
  • Chen X., Closmann F., Rochelle G.T. (2011) Accurate screening of amines by the Wetted Wall Column, Energy Procedia 4, 101–108. [CrossRef] [Google Scholar]
  • Cooper B.H., Donnis B.B.L., Moyse B. (1986) Oil Gas J. 8, December, 39–44. [Google Scholar]
  • Decoodt X., Plais C., Bazer-Bachi F. (2014) Continuous catalyst regeneration reactor with a chamber for mixing gas and distributing gas in the oxychlorination zone, US patent 2014/0027348. [Google Scholar]
  • Deen N.G., van Sint Annaland M., Van der Hoef M.A., Kuipers J.A.M. (2007) Review of discrete particle modeling of fluidized beds, Chem. Eng. Sci. 62, 1-2, 28–44. [CrossRef] [Google Scholar]
  • Derouin C., Nevicato D., Forissier M., Wild G., Bernard J.R. (1997) Hydrodynamics of riser units and their impact on FCC operation, Ind. Eng. Chem. Res. 36, 4504–4515. [CrossRef] [Google Scholar]
  • Dry M.E. (2002) The Fischer–Tropsch process: 1950–2000, Catal. Today 71, 227–241. [CrossRef] [Google Scholar]
  • Forni L. (1997) Laboratory reactors, Catal. Today 34, 353–367. [CrossRef] [Google Scholar]
  • Forret A., Schweitzer J.-M., Gauthier T., Krishna R., Schweich D. (2003) Influence of scale on the hydrodynamics of bubble column reactors: An experimental study in columns of 0.1, 0.4 and 1 m diameters, Chem. Eng. Sci. 58, 719–724. [CrossRef] [Google Scholar]
  • Fourati M., Roig V., Raynal L. (2013) Liquid dispersion in packed columns: experiments and numerical modeling, Chem. Eng. Sci. 100, 266–278. [CrossRef] [Google Scholar]
  • Gavi E., Marchisio D., Barresi A.A., Olsen M.G., Fox R.O. (2010) Turbulent precipitation in micromixers: CFD simulation and flow field validation, Chem. Eng. Res. Design 88, 9, 1182–1193. [CrossRef] [Google Scholar]
  • Gidaspow D. (1994) Multiphase Flow and Fluidization: Continuum and Kinetic Theory Description, Academic Press, Boston. [Google Scholar]
  • Ginestra J.C., Jackson R. (1985) Pinning of a bed of particles in a vertical channel by a cross flow of gas, Ind. Eng. Chem. Fundam. 24, 121–128. [CrossRef] [Google Scholar]
  • Greenwood A.R. (1987) Catalyst regeneration apparatus, US patent 4, 687, 637. [Google Scholar]
  • Guedes de Carvalho J.R.F., Delgado J.M.P.Q. (2001) Radial dispersion in liquid flow through packed beds for 50<Sc<750 and 103<Pem<105, Fifth World Conference on Experimental Heat Transfer, Fluid Mechanics Thermodynamics. [Google Scholar]
  • Gupta R.K., Kumara V., Srivastava V.K. (2007) A new generic approach for the modeling of fluid catalytic cracking (FCC) riser reactor, Chem. Eng. Sci. 62, 4510–4528. [CrossRef] [Google Scholar]
  • Haroun Y., Legendre D., Raynal L. (2010) Volume of fluid method for interfacial reactive mass transfer: Application to stable liquid film, Chem. Eng. Sci. 65, 10, 2896–2909. [CrossRef] [Google Scholar]
  • Haroun Y., Augier F. (2014) Device for injecting and mixing fluids in a downward-flow reactor, US patent 2014/0224707. [Google Scholar]
  • Haroun Y., Raynal L. (2015) Use of Computational Fluid Dynamics for absorption packed column design, Oil Gas Sci. Technol. DOI: 10.2516/ogst/2015027. [Google Scholar]
  • Heidari A., Hashemabadi S.H. (2013) Numerical evaluation of the gas-liquid interfacial heat transfer in the trickle flow regime of packed beds at the micro and meso-scale, Chem. Eng. Sci. 104, 18, 674–689. [CrossRef] [Google Scholar]
  • Hills J.H. (1974) Radial, non-uniformity of velocity and voidage in bubble column, Trans. Inst. Chem. Eng. 52, 1–9. [Google Scholar]
  • Hong H.-S., Cai Z.-J., Li J.-Q., Shi D.-S., Wan W.-Q., Li L. (2014) Simulation of gas-inducing reactor couples gas-liquid mass transfer and biochemical reaction, Biochemical Eng. J. 91, 1–9. [CrossRef] [Google Scholar]
  • Horgue P., Augier F., Duru P., Quintard M., Prat M. (2013) Arrays of cylinders as an experimental and numerical laboratory for the study of trickling and pulsing flows, Chem. Eng. Sci. 102, 335–345. [CrossRef] [Google Scholar]
  • Jiang J., Wu J., Zhang J., Poncin S., Li H.Z. (2014) Multiscale hydrodynamic investigation to intensify the biogas production in upflow anaerobic reactors, Bioresource Tech. 155, 1–7. [CrossRef] [Google Scholar]
  • Jiradilok V., Gidaspow D., Damronglerd S., Koves W.J., Mostofi R. (2006) Kinetic theory based CFD simulation of turbulent fluidization of FCC particles in a riser, Chem. Eng. Sci. 61, 17, 5544–5559. [CrossRef] [Google Scholar]
  • Kataoka H., Takeuchi H., Nakao K., Yagi H., Tadaki T., Otake T. (1979) Mass transfer in a large bubble column, J. Chem. Eng. Japan 12, 2, 105–110. [CrossRef] [Google Scholar]
  • Kirillov V.A., Mikhailova I.A., Fadeyev S.I., Korolev V.K. (2002) Critical phenomena of an exothermic reaction proceeding on a partially wetted porous catalyst grain, Combustion, Explosion and Shock Waves 38, 508–517. [CrossRef] [Google Scholar]
  • Koide K., Morooka S., Ueyama K., Matsuura A., Yamashita F., Iwamoto S., Kato Y., Inoue H., Shigeta M., Suzuki S., Akehata T. (1979) Behavior of bubbles in large scale bubble column, J. Chem. Eng. Japan 12, 2, 98–104. [CrossRef] [Google Scholar]
  • Kojima E., Unno H., Sato Y., Chida T., Imai H., Endo K., Inoue I., Kobayashi J., Kaji H., Nakanishi H., Yamamoto K. (1980) Liquid phase velocity in a 5.5 m diameter bubble column, J. Chem. Eng. Japan 13, 1, 16–21. [CrossRef] [Google Scholar]
  • Krishna R., van Baten J.M., Ellenberger J., Higler A.P., Taylor R. (1999a) CFD simulations of sieve tray hydrodynamics, Chem. Eng. Res. Design 77, A7, 639–646. [CrossRef] [Google Scholar]
  • Krishna R., Urseanu M.I., van Baten J.M., Ellenberger J. (1999b) Influence of scale on the hydrodynamics of bubble columns operating in churn-turbulent regime: experiments vs. Eulerian simulations, Chem. Eng. Sci. 54, 4903–4911. [CrossRef] [Google Scholar]
  • Krishna R., van Baten J.M., Urseanu M.I. (2000) Three-phase Eulerian simulations of bubble column reactors operating in the churn-turbulent regime: a scale up strategy, Chem. Eng. Sci. 55, 16, 3275–3286. [CrossRef] [Google Scholar]
  • Krishna R., van Baten J.M. (2001) Eulerian simulations of bubble columns operating at elevated pressures in the churn turbulent flow regime, Chem. Eng. Sci. 56, 21-22, 6249–6258. [CrossRef] [Google Scholar]
  • Krishna R., van Baten J.M. (2002) Scaling up bubble column reactors with highly viscous liquid phase, Chem. Eng. Tech. 25, 10, 1015–1020. [CrossRef] [Google Scholar]
  • Krishna R., van Baten J.M. (2003) Modelling sieve tray hydraulics using computational fluid dynamics, Chem. Eng. Res. Design 81, A1, 27–38. [CrossRef] [Google Scholar]
  • Kuipers J.A.M., van Swaaij W.P.M. (1997) Application of computational fluid dynamics to chemical reaction engineering, Rev. Chem. Eng. 13, 3, 1–118. [CrossRef] [Google Scholar]
  • Lappalainen K., Manninen M., Alopaeus V. (2009) CFD modeling of radial spreading of flow in trickle-bed reactors due to mechanical and capillary dispersion, Chem. Eng. Sci. 64, 207–218. [CrossRef] [Google Scholar]
  • Lappin A., Lübbert A. (1994) Numerical simulation of the dynamics of two-phase gas-liquid flows in bubble columns, Chem. Eng. Sci. 49, 21, 3661–3674. [CrossRef] [Google Scholar]
  • Larachi F., Desvigne D., Donnat L., Schweich D. (2006) Simulating the effects of liquid circulation in bubble columns with internals, Chem. Eng. Sci. 61, 4195–4206. [CrossRef] [Google Scholar]
  • Larachi F., Hannaoui R., Horgue P., Augier F., Haroun Y., Youssef S., Rosenberg E., Prat M., Quintard M. (2014) X-ray micro-tomography and pore network modeling of single-phase fixed-bed reactors, Chem. Eng. J. 240, 290–306. [CrossRef] [Google Scholar]
  • Li X., Yang N., Sun Y., Zhang L., Li X., Jiang B. (2014) Computational Fluid Dynamics Modeling of Hydrodynamics of a New Type of Fixed Valve Tray, Ind. Eng. Res. 53, 1, 379–389. [CrossRef] [Google Scholar]
  • Lopes G.C., Rosa L.M., Mori M., Nunhez J.R., Martignoni W.P. (2011) Three-dimensional modeling of fluid catalytic cracking industrial riser flow and reactions, Comput. Chem. Eng. 35, 2159–2168. [CrossRef] [Google Scholar]
  • Luo H., Svendsen H.F. (1996) Theoretical model for drop and bubble breakup in turbulent dispersions, AICHE J. 42, 5, 1225–1233. [CrossRef] [Google Scholar]
  • Luo S.J., Fei W.Y., Song X.Y., Li H.Z. (2008) Effect of channel opening angle on the performance of structured packings, Chem. Eng. J. 144, 2, 227–234. [CrossRef] [Google Scholar]
  • Luo X., Hartono A., Svendsen H.F. (2012) Comparative kinetics of carbon dioxide absorption in unloaded aqueous monoethanolamine solutions using wetted wall and string of discs columns, Chem. Eng. Sci. 82, 31–43. [CrossRef] [Google Scholar]
  • Magnico P., Fongarland P. (2006) CFD simulations of two stirred tank reactors with stationary catalytic basket, Chem. Eng. Sci. 61, 1217–1236. [CrossRef] [Google Scholar]
  • Mahoney J.A., Robinson K.K., Myers E.C. (1978) Catalyst evaluation with the gradientless reactor, Chemtech. 8, N12, 758–763. [Google Scholar]
  • Maiti R.N., Nigam K.D.P. (2007) Gas-Liquid distributors for trickle-bed reactors: A review, Ind. Eng. Chem. Res. 46, 6164–6182. [CrossRef] [Google Scholar]
  • Marcandelli C., Lamine A.S., Bernard J.R., Wild G. (2000) Liquid distribution in trickle-bed reactor, Oil Gas Sci. Technol. 55, 407–415. [CrossRef] [EDP Sciences] [Google Scholar]
  • Mehmood N., Olmos E., Marchal P., Goergen J.-L., Delaunay S. (2010) Relation between pristinamycins production by Streptomyces pristinaespiralis, power dissipation and volumetric gas-liquid mass transfer coefficient, kLa, Process Biochemistry 45, 11, 1779–1786. [CrossRef] [Google Scholar]
  • Mitrovic M., Pitault I., Forissier M., Simoens S., Ronze D. (2005) Liquid-solid mass transfer in a three-phase stationary catalytic basket reactor, AIChE J. 51, 1747–1757. [CrossRef] [Google Scholar]
  • Moula G., Nastoll W., Simonin O., Andreux R. (2013) Multiscale Study of Reactive Dense Fluidized Bed for FCC Regenerator, Oil Gas Sci. Technol. 68, 6, 1073–1092. [CrossRef] [EDP Sciences] [Google Scholar]
  • Neri A., Gidaspow D. (2000) Riser hydrodynamics: Simulation using kinetic theory, AIChE J. 46, 1, 52–67. [CrossRef] [Google Scholar]
  • Ng K.M., Chu C.F. (1987) Trickle-Bed Reactors, Chem. Eng. Prog. 83, 11, 55–63. [Google Scholar]
  • Nijemeisland M., Dixon A.G. (2004) CFD study of fluid flow and wall heat transfer in a fixed bed of spheres, AIChE J. 50, 5, 906–921. [CrossRef] [Google Scholar]
  • Olmos E., Gentric C., Vial C., Wild G., Midoux N. (2001) Numerical simulation of multiphase flow in bubble column reactors. Influence of bubble coalescence and break-up, Chem. Eng. Sci. 56, 21-22, 6359–6365. [CrossRef] [Google Scholar]
  • Oryx GTL (2015) http://www.oryxgtl.com.qa/. [Google Scholar]
  • Perego C., Peratello S. (1999) Experimental methods in catalytic kinetics, Catal. Today 52, 133–145. [CrossRef] [Google Scholar]
  • Petre C.F., Larachi F., Illiuta I., Grandjean B.P.A. (2003) Pressure drop through structured packings: breakdown into the contributing mechanisms by CFD modeling, Chem. Eng. Sci. 58, 163–177. [CrossRef] [Google Scholar]
  • Pitault I., Fongarland P., Mitrovic M., Ronze D., Forissier M. (2004) Choice of laboratory scale reactors for HDT kinetic studies or catalyst tests, Catal. Today 98, 31–42. [CrossRef] [Google Scholar]
  • Pitault I., Fongarland P., Koepke D., Mitrovic M., Ronze D., Forissier M. (2005) Gas–liquid and liquid–solid mass transfers in two types of stationary catalytic basket laboratory reactor, Chem. Eng. Sci. 60, 6240–6253. [CrossRef] [Google Scholar]
  • Raynal L. (2001) Simulation numérique des colonnes à bulles, IFP Internal Report No. 56049. [Google Scholar]
  • Raynal L., Harter I. (2001) Studies of Gas-Liquid flow through distributing devices using VOF-CFD simulations, Chem. Eng. Sci. 56, 6385–6391. [CrossRef] [Google Scholar]
  • Raynal L., Forret A., Schweitzer J.-M. (2001) Simulation numérique Euler/Euler de l’hydrodynamique de colonnes à bulles, in Récents progrès en Génie des Procédés, Lavoisier Tech. et Doc. Ed. 15, 227–234. [Google Scholar]
  • Raynal L. (2005) Use of CFD for applications in the oil and gas industry, Revue de la Houille Blanche 5, 75–78. [CrossRef] [EDP Sciences] [Google Scholar]
  • Raynal L., Gomez A., Caillat B., Haroun Y. (2013) CO2 Capture Cost Reduction: use of a Multiscale Simulations Strategy for a Multiscale Issue, Oil Gas Sci. Technol. 68, 6, 1093–1108. [CrossRef] [EDP Sciences] [Google Scholar]
  • Santos-Moreau V., Brunet-Errard L., Rolland M. (2012) Numerical CFD simulation of a batch stirred tank reactor with stationary catalytic basket, Chem. Eng. J. 207-208, 596–606. [CrossRef] [Google Scholar]
  • Sanyal J., Marchisio D.L., Fox R.O., Dhanasekharan K. (2005) On the comparison between population balance models for CFD simulation of bubble columns, Ind. Eng. Chem. Res. 44, 14, 5063–5072. [CrossRef] [Google Scholar]
  • Schweitzer J.-M. (2003) Personal communication. [Google Scholar]
  • Schwidder S., Schnitzlein K. (2012) A new model for the design and analysis of trickle bed reactors, Chem. Eng. J. 207-208, 758–765. [CrossRef] [Google Scholar]
  • Sederman A.J., Gladden L.F. (2001) Magnetic resonance imaging as a quantitative probe of gas-liquid distribution and wetting efficiency in trickle-bed reactors, Chem. Eng. Sci. 56, 8, 2615–2628. [CrossRef] [Google Scholar]
  • Servia A., Laloue N., Grandjean J., Rode S., Roizard C. (2014) Modeling of the CO2 Absorption in a Wetted Wall Column by Piperazine Solutions, Oil Gas Sci. Technol. 69, 5, 885–902. [CrossRef] [EDP Sciences] [Google Scholar]
  • Solomenko Z., Haroun Y., Fourati M., Larachi F., Boyer C., Augier F. (2015) Liquid spreading in trickle-bed reactors: Experiments and numerical simulations using Eulerian-Eulerian two-fluid approach, Chem. Eng. Sci. 126, 698–710. [CrossRef] [Google Scholar]
  • Spogis N., Nunhez J.R. (2009) Design of a High-Efficiency Hydrofoil Through the Use of Computational Fluid Dynamics and Multiobjective Optimization, AIChE J. 55, 7, 1723–1735. [CrossRef] [Google Scholar]
  • Tosun G. (1984) A study of cocurrent downflow of nonfoaming gas-liquid systems in a packed bed. 2. Pressure drop: Search for a correlation, Ind. Eng. Chem. Process Des. Dev. 23, 35–39. [CrossRef] [Google Scholar]
  • Trambouze P. (1993) Computational Fluid Dynamics applied to Chemical Reaction Engineering, Revue de l’Institut Français du Pétrole 48, 6, 595–613. [Google Scholar]
  • van Baten J.M., Krishna R. (2004) Eulerian simulation strategy for scaling up a bubble column slurry reactor for Fischer-Tropsch synthesis, Ind. Eng. Chem. Res. 43, 16, 4483–4493. [CrossRef] [Google Scholar]
  • van der Hoef M.A., Annaland M.V., Kuipers J.A.M. (2004) Computational fluid dynamics for dense gas-solid fluidized beds: a multi-scale modeling strategy, Chem. Eng. Sci. 59, 22-23, 5157–5165. [CrossRef] [Google Scholar]
  • van Houwelingen A.J., Kok S., Nicol W. (2010) Effectiveness Factors for Partially Wetted Catalysts, Ind. Eng. Chem. Res. 49, 17, 8114–8124. [CrossRef] [Google Scholar]
  • Wang Y., Jinwen C., Larachi F. (2013) Modelling and simulation of trickle-bed reactors using computational fluid dynamics: a state-of-the-art review, The Canadian Journal of Chemical Engineering 91, 136–180. [CrossRef] [Google Scholar]
  • Whitaker S. (1999) The method of volume averaging, theory and applications of transport in porous media, Kluwer Academic Publishers, Dordrecht, The Netherlands. [CrossRef] [Google Scholar]
  • Zehner P. (1986) Momentum, mass and heat transfer in bubble columns. Part 1. Flow model of the bubble column and liquid velocities, Int. Chem. Eng. 26, 22. [Google Scholar]
  • Zhenyuan W., Zhenmin C., Zibin H., Kun Y. (2013) Intensified Gas−Liquid Mixing in a Quench Box under the Driving of Super gravitational Swirling Flow, Ind. Eng. Chem. Res. 52, 12802–12811. [CrossRef] [Google Scholar]
  • Zou R. (1995) The packing of spheres in a cylindrical container: The thickness effect, Chem. Eng. Sci. 50, 9, 1504–1507. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.