Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 71, Number 1, January–February 2016
Article Number 12
Number of page(s) 16
DOI https://doi.org/10.2516/ogst/2013187
Published online 22 January 2016
  • Andrae J.C.G. (2008) Development of a detailed kinetic model for gasoline surrogate fuels, Fuel 87, 10-11, 2013–2022. [CrossRef] [Google Scholar]
  • ANP (2011) Brazilian National Petroleum, Natural Gas and Biofuels Agency, ANP Resolution # 57 – Regulation for Brazilian automotive gasoline specification, ANP, Brazil. [Google Scholar]
  • AVL (2011) BOOST software, version 2011 – Theory, AVL, Graz, Austria. [Google Scholar]
  • Berta P., Aggarwal S.K., Puri I.K. (2006) An experimental and numerical investigation of n-heptane/air counterflow partially premixed flames and emission of NOx and PAH species, Combust. Flame 145, 4, 740–764. [CrossRef] [Google Scholar]
  • Bounaceur R., Costa I.D., Fournet R., Billaud F., Battin-Leclerc F. (2005) Experimental and modeling study of the oxidation of toluene, Int. J. Chem. Kinet. 37, 1, 25–49. [CrossRef] [Google Scholar]
  • Calado V.M.A., Montgomery D.C. (2003) Design of Experiments using Statistica, E-papers, Rio de Janeiro, Brazil. [Google Scholar]
  • CFR (2009) Code of Federal Regulations, CFR Title 40 Part 91 - Control of emissions from marine spark-ignition engines, Subpart E - Gaseous exhaust test procedures, CFR, USA. [Google Scholar]
  • Curran H.J., Gaffuri P., Pitz W.J., Westbrook C.K. (1998) A comprehensive modeling study of n-heptane oxidation, Combust. Flame 114, 1-2, 149–177. [CrossRef] [Google Scholar]
  • Curran H.J., Gaffuri P., Pitz W.J., Westbrook C.K. (2002) A comprehensive modeling study of iso-octane oxidation, Combust. Flame 129, 253–280. [CrossRef] [Google Scholar]
  • Dagaut P., Pengloan G., Ristori A. (2002) Oxidation, ignition and combustion of toluene: Experimental and detailed chemical kinetic modeling, Phys. Chem. Chem. Phys. 4, 10, 1846–1854. [CrossRef] [Google Scholar]
  • Davidson D.F., Gauthier B.M., Hanson R.K. (2005) Shock tube ignition measurements of iso-octane/air and toluene/air at high pressures, Proc. Combust. Inst. 30, 1, 1175–1182. [CrossRef] [Google Scholar]
  • Emdee J.L., Brezinsky K., Glassman I. (1992) A kinetic-model for the oxidation of toluene near 1200-K, J. Phys. Chem. 96, 5, 2151–2161. [CrossRef] [Google Scholar]
  • Gauthier B.M., Davidson D.F., Hanson R.K. (2004) Shock tube determination of ignition delay times in full blend and surrogate fuel mixtures, Combust. Flame 139, 4, 300–311. [CrossRef] [Google Scholar]
  • Herzler J., Jerig L., Roth P. (2005) Shock tube study of the ignition of lean n-heptane/air mixtures at intermediate temperatures and high pressures, Proc. Combust. Inst. 30, 1, 1147–1153. [CrossRef] [Google Scholar]
  • He X., Donovan M.T., Zigler B.T., Palmer T.R., Walton S.M., Wooldridge M.S., Atreya A. (2005) An experimental and modeling study of iso-octane ignition delay times under homogeneous charge compression ignition conditions, Combust. Flame 142, 3, 266–275. [CrossRef] [Google Scholar]
  • Heywood J.B. (1988) Internal Combustion Engine Fundamentals, McGraw Hill Inc., USA. [Google Scholar]
  • ISO (1992) International Organization for Standardization, ISO 1585 - Road vehicles, engine test code, net power, ISO, Geneva, Switzerland. [Google Scholar]
  • Machado G.B. (2012) Metodologias para Desenvolvimento de Combustíveis e Determinação da Velocidade de Propagação de Chama em Motores de Ignição por Centelha, PhD Thesis, Pontifícia Universidade Católica do Rio de Janeiro – PUC-Rio, Rio de Janeiro, Brazil. [Google Scholar]
  • Machado G.B., Barros J.E.M., Braga S.L., Braga C.V.M., Oliveira E.J., Silva A.H.M.F.T., Carvalho L.O. (2011) Investigations on surrogate fuels for high octane oxygenated gasolines, Fuel 90, 2, 640–646. [CrossRef] [Google Scholar]
  • Machado G.B., Barros J.E.M., Braga S.L., Braga C.V.M., Oliveira E.J., Silva A.H.M.F.T., Azevedo E.C.Z. (2012) Methodologies for fuel development using surrogate fuels on spark ignition engines, SAE Technical Paper doi: 2012-36-0477. [Google Scholar]
  • Melo T.C.C., Machado G.B., Belchior C.R.P., Colaço M.J., Barros J.E.M., Oliveira E.J., Oliveira D.G. (2012) Hydrous ethanol-gasoline blends – combustion and emission investigation on a flex-fuel engine, Fuel 97, 796–804. [CrossRef] [Google Scholar]
  • Montgomery D.C., Runger G.C. (1994) Applied Statistics and Probability for Engineers, John Wiley & Sons, New York, USA. [Google Scholar]
  • Pitz W.J., Seiser R., Bozzelli J.W., Seshadri K., Chen C.J., Costa I.D., Fournet R., Billaud F., Battin-Leclerc F., Westbrook C.K. (2003) Chemical Kinetic Study of Toluene Oxidation under Premixed and Nonpremixed Conditions, UCRL-CONF-201575, Lawrence Livermore National Laboratory, California, USA. [Google Scholar]
  • Pitz W.J., Cernansky N.P., Dryer F.L., Egolfopoulos F.N., Farrell J.T., Friend D.G., Pitsch H. (2007) Development of an experimental database and chemical kinetic models for surrogate gasoline fuels, SAE Technical Paper 2007-01-0175. [Google Scholar]
  • Silke E.J., Curran H.J., Simmie J.M. (2005) The influence of fuel structure on combustion as demonstrated by the isomers of heptane: a rapid compression machine study, Proc. Combust. Inst. 30, 2, 2639–2647. [CrossRef] [Google Scholar]
  • Sivaramakrishnan R., Tranter R.S., Brezinsky K. (2005) A high pressure model for the oxidation of toluene, Proc. Combust. Inst. 30, 1, 1165–1173. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.