IFP Energies nouvelles International Conference: NEXTLAB 2014 – Advances in Innovative Experimental Methodology or Simulation Tools used to Create, Test, Control and Analyse Systems, Materials and Molecules
Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 70, Number 3, May–June 2015
IFP Energies nouvelles International Conference: NEXTLAB 2014 – Advances in Innovative Experimental Methodology or Simulation Tools used to Create, Test, Control and Analyse Systems, Materials and Molecules
Page(s) 437 - 446
DOI https://doi.org/10.2516/ogst/2014040
Published online 25 November 2014
  • Ruddigkeit L., van Deursen R., Blum L.C., Reymond J.L. (2012) Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17, J. Chem. Inf. Model. 52, 2864–2875. [Google Scholar]
  • Campbell C.E., Olson G.B. (2000) Systems design of high performance stainless steels I Conceptual and computational design, Journal of Computer-Aided Materials Design 7, 145–170. [CrossRef] [Google Scholar]
  • Campbell C.E., Olson G.B. (2000) Systems design of high performance stainless steels II. Prototype characterization, Journal of Computer-Aided Materials Design 7, 171–194. [CrossRef] [Google Scholar]
  • Jandeleit B., Turner H.W., Uno T., van Beek J.A.M., Weinberg W.H. (1998) Combinatorial methods in catalysis, Cattech 2, 101–123. [Google Scholar]
  • Weinberg W.H., Jandeleit B., Self K., Turner H. (1998) Combinatorial methods in homogeneous and heterogeneous catalysis, Curr. Opinion Sol. State Mater. Sci. 3, 104–110. [CrossRef] [Google Scholar]
  • Newsam J.M., Schüth F. (1999) Combinatorial approaches as a component of high throughput experimentation (HTE) in catalysis research, Biotechnology and Bioengineering (Combinatorial Chemistry) 61, 203–216. [CrossRef] [Google Scholar]
  • Cong P., Doolen R.D., Fan Q., Giaquinta D.M., Guan S., McFarland E.W., Poojary D.M., Self K., Turner H.W., Weinberg W.H. (1999) High-Throughput Synthesis and Screening of Combinatorial Heterogeneous Catalyst Libraries, Angew. Chem. Int. Ed. 38, 484–488. [CrossRef] [Google Scholar]
  • Jandeleit B., Schaefer D.J., Powers T.S., Turner H.W., Weinberg W.H. (1999) Combinatorial Materials Science and Catalysis, Angew. Chem. Int. Ed. 38, 2494–2532. [CrossRef] [Google Scholar]
  • Schunk S.A., Demuth D., Cross A., Gerlach O., Haas A., Klein J., Newsam J.M., Sundermann A., Stichert W., Strehlau W., Vietze U., Zech T. (2004) Mastering the Challenges of Catalyst Screening in High-Throughput Experimentation for Heterogeneously Catalyzed Gas-phase Reactions, in High-Throughput Screening in Chemical Catalysis: Technologies, Strategies and Applications, Hagemeyer A., Strasser P., Volpe A.F. (eds), Wiley-VCH Verlag GmbH & Co. KGaA, pp.19–61. [Google Scholar]
  • Hagemeyer A., Strasser P., Volpe A.F. (eds) (2006) High-Throughput Screening in Chemical Catalysis: Technologies Strategies and Applications, Wiley-VCH. [Google Scholar]
  • Schüth F., Demuth D. (2006) High-Throughput-Experimentation in der heterogenen Katalyse, Chemie Ingenieur Technik 78, 851–861. [CrossRef] [Google Scholar]
  • Farrusseng D. (2008) High-throughput heterogeneous catalysis, Surface Science Reports 63, 487–513. [Google Scholar]
  • Kustov L.M. (2010) Catalysis à la combi, Russian Journal of General Chemistry 80, 2527–2540. [CrossRef] [Google Scholar]
  • Zheng Z.Q., Zhou X.P. (2011) High speed screening technologies in heterogeneous catalysis, Comb. Chem. High Throughput Screen. 14, 147–159. [CrossRef] [PubMed] [Google Scholar]
  • Schunk S.A., Bohmer N., Futter C., Kuschel A., Prasetyo E., Roussiere T. (2013) High throughput technology: approaches of research in homogeneous and heterogeneous catalysis, Catalysis 25, The Royal Society of Chemistry (ed.), pp.172–215. [CrossRef] [Google Scholar]
  • Hagemeyer A., Volpe A.F. (eds) (2014) Modern Applications of High Throughput R&D in Heterogeneous Catalysis, Bentham Science, Oak Park, IL. [CrossRef] [Google Scholar]
  • Haber J.A., Cai Y., Jung S., Xiang C., Mitrovic S., Jin J., Bell A.T., Gregoire J.M. (2014) Discovering Ce-rich oxygen evolution catalysts, from high throughput screening to water electrolysis, Energy & Environmental Science 7, 682–688. [CrossRef] [Google Scholar]
  • Huskinson B., Marshak M.P., Suh C., Er S., Gerhardt M.R., Galvin C.J., Chen X., Aspuru-Guzik A., Gordon R.G., Aziz M.J. (2014) A metal-free organic-inorganic aqueous flow battery, Nature 505, 195–198. [CrossRef] [PubMed] [Google Scholar]
  • Baerlocher C., McCusker L.B. (2014) Database of Zeolite Structures, http://www.iza-structure.org/databases/, accessed September 2014. [Google Scholar]
  • Ricchiardi G., Newsam J.M. (1997) The Predicted Effects of Site-Specific Aluminum Substitution on the Framework Geometry and Unit Cell Dimensions of Zeolite ZSM-5 Materials, J. Phys. Chem. 101B, 9943–9950. [CrossRef] [Google Scholar]
  • Tabeling P. (2010) Introduction to Microfluidics, Oxford University Press, USA. [Google Scholar]
  • Kleinstreuer C. (2013) Microfluidics and Nanofluidics: Theory and Selected Applications, Wiley, New York. [CrossRef] [Google Scholar]
  • Dressler O.J., Maceiczyk R.M., Chang S.I., Demello A.J. (2014) Droplet-Based Microfluidics: Enabling Impact on Drug Discovery, J. Biomol. Screen 19, 483–496. [CrossRef] [PubMed] [Google Scholar]
  • Agresti J.J., Antipov E., Abate A.R., Ahn K., Rowat A.C., Baret J.C., Marquez M., Klibanov A.M., Griffiths A.D., Weitz D.A. (2010) Ultrahigh-throughput screening in drop-based microfluidics for directed evolution, Proc. Natl. Acad. Sci. USA 107, 4004–4009. [CrossRef] [Google Scholar]
  • Abate A.R., Hung T., Sperling R.A., Mary P., Rotem A., Agresti J.J., Weiner M.A., Weitz D.A. (2013) DNA sequence analysis with droplet-based microfluidics, Lab. Chip. 13, 4864–4869. [CrossRef] [PubMed] [Google Scholar]
  • Zheng B., Roach L.S., Ismagilov R.F. (2003) Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets, J. Am. Chem. Soc. 125, 11170–11171. [CrossRef] [PubMed] [Google Scholar]
  • Goyal S., Thorson M.R., Schneider C.L., Zhang G.G.Z., Gong Y., Kenis P.J.A. (2013) A Microfluidic Platform for Evaporation-based Salt Screening of Pharmaceutical Parent compounds, Lab. Chip. 13, 1708–1723. [CrossRef] [PubMed] [Google Scholar]
  • Thorson M.R., Goyal S., Schudel B.R., Zukoski C.F., Zhang G.G.Z., Gong Y., Kenis P.J.A. (2011) A microfluidic platform for pharmaceutical salt screening, Lab. Chip. 11, 3829–3837. [CrossRef] [PubMed] [Google Scholar]
  • Miller O.J., El Harrak A., Mangeat T., Baret J.C., Frenz L., El Debs B., Mayot E., Samuels M.L., Rooney E.K., Dieu P., Galvan M., Link D.R., Griffiths A.D. (2012) High-resolution dose-response screening using droplet-based microfluidics, Proc. Natl. Acad. Sci. USA 109, 378–383. [CrossRef] [Google Scholar]
  • Maiser B., Dismer F., Hubbuch J. (2014) Optimization of random PEGylation reactions by means of high throughput screening, Biotechnol. Bioeng. 111, 104–114. [CrossRef] [PubMed] [Google Scholar]
  • Newsam J.M., Feygin I., King-Smith R.D., Jousse F., Jongen T. (2003) Screening of Microfluidic Processing Geometries, US Provisional Patent Application. [Google Scholar]
  • Feygin I., Newsam J.M. (2004) Method and apparatus for quasi-continuous and quasi-simultaneous dispensing, US Patent 6,742,549. [Google Scholar]
  • Feygin I., Newsam J.M. (2006) Rotary-Drive Dispenser, US Patent 7,028,726. [Google Scholar]
  • Feygin I., Newsam J.M. (2004) Fluid-handling systems and components comprising a bladder pump, and methods therefor, US Patent 6,733,252. [Google Scholar]
  • Franz T.J. (1975) Percutaneous absorption. On the relevance of in vitro data, J. Invest. Dermatol. 64, 190–195. [CrossRef] [PubMed] [Google Scholar]
  • Newsam J.M., King-Smith R.D., Jain A., Karande P., Feygin I., Burbaum J., Gowrishankar T.R., Sergeeva M., Mitragotri S. (2005) Screening soft materials for their effect on skin barrier function by high throughput experimentation, J. Materials Chemistry 15, 3061–3068. [CrossRef] [Google Scholar]
  • Karande P., Jain A., Mitragotri S. (2004) Discovery of transdermal penetration enhancers by high-throughput screening, Nature Biotechnology 22, 192–197. [CrossRef] [PubMed] [Google Scholar]
  • Newsam J.M., Feygin I., Mitragotri S., King-Smith R.D. (2012) Apparatus and methods for evaluating the barrier properties of a membrane, US Patent 8,277,762. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.