IFP Energies nouvelles International Conference: E-COSM’12 – IFAC Workshop on Engine and Powertrain Control, Simulation and Modeling
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 70, Number 1, January–February 2015
IFP Energies nouvelles International Conference: E-COSM’12 – IFAC Workshop on Engine and Powertrain Control, Simulation and Modeling
Page(s) 55 - 65
DOI https://doi.org/10.2516/ogst/2013203
Published online 11 April 2014
  • Alkemade U.G., Schumann B. (2006) Engines and exhaust after treatment systems for future automotive applications, Solid State Ionics 177, 2291–2296. [CrossRef] [Google Scholar]
  • Beulertz G., Votsmeier M., Herbst F., Moos R. (2012) Replacing the lambda probe by radio frequency-based in-operando three-way catalyst oxygen loading detection, The 14th International Meeting on Chemical Sensors, Nuremberg, Germany, doi: 10.5162/IMCS2012/P2.2.7. [Google Scholar]
  • Beulertz G., Fritsch M., Fischerauer G., Herbst F., Gieshoff J., Votsmeier M., Hagen G., Moos R. (2013) Microwave Cavity Perturbation as a Tool for Laboratory in Situ Measurement of the Oxidation State of Three Way Catalysts, Topics in Catalysis 56, 405–409. [CrossRef] [Google Scholar]
  • Boaro M., Trovarelli A., Hwang J.-H., Mason T.O. (2002) Electrical and oxygen storage/release properties of nanocrystalline ceria–zirconia solid solutions, Solid State Ionics 147, 85–95. [CrossRef] [Google Scholar]
  • Busca G., Lietti L., Ramis G., Berti F. (1998) Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review, Applied Catalysis B: Environmental 18, 1–36. [CrossRef] [Google Scholar]
  • Carter R.G. (2001) Accuracy of Microwave Cavity Perturbation Measurements, IEEE Trans. MTT 49, 918–923. [CrossRef] [Google Scholar]
  • Ciardelli C., Nova I., Tronconi E., Chatterjee D., Bandl-Konrad B., Weibel M., Krutzsch B. (2007) Reactivity of NO/NO2–NH3 SCR system for Diesel exhaust aftertreatment: Identification of the reaction network as a function of temperature and NO2 feed content, Applied Catalysis B: Environmental 70, 80–90. [Google Scholar]
  • Epling W.S., Campbell L.E., Yezerets A., Currier N.W., Parks J.E. (2004) Overview of the Fundamental Reactions and Degradation Mechanisms of NOx Storage/Reduction Catalysts, Catal. Rev. 6, 163–245. [CrossRef] [Google Scholar]
  • Feulner M., Hagen G., Müller A., Brüggemann D., Moos R. (2012) In-Operation Monitoring of the Soot Load of Diesel Particulate Filters with a Microwave Method, The 14th International Meeting on Chemical Sensors, Nuremberg, Germany. doi: 10.5162/IMCS2012/P2.2.6. [Google Scholar]
  • Feulner M., Hagen G., Piontkowski A., Müller A., Fischerauer G., Brüggemann D., Moos R. (2013a) In-Operation Monitoring of the Soot Load of Diesel Particulate Filters - Initial Tests, Topics in Catalysis 56, 483–488. [CrossRef] [Google Scholar]
  • Feulner M., Müller A., Hagen G., Brüggemann D., Moos R. (2013b) Microwave-Based Diesel Particulate Filter Monitoring – Soot Load Determination and Influencing Parameters Sensor 2013, Proceedings of the 16th International Conference on Sensors and Measurement Science, Nuremberg, Germany. doi:10.5162/sensor2013/P4.1. [Google Scholar]
  • Fergus J.W. (2007) Solid electrolyte based sensors for the measurement of CO and hydrocarbon gases, Sensors and Actuators B: Chemical 122, 683–693. [CrossRef] [Google Scholar]
  • Fischerauer G., Spörl M., Gollwitzer A., Wedemann M., Moos R. (2008) Catalyst State Observation via the Perturbation of a Microwave Cavity Resonator, Frequenz 62, 180–184. [CrossRef] [Google Scholar]
  • Fischerauer G., Spörl M., Reiß S., Moos R. (2010a) Microwave-Based Investigation of Electrochemical Processes in Catalysts and Related Systems, Technisches Messen 77, 419–427. [Google Scholar]
  • Fischerauer G., Förster M., Moos R. (2010b) Sensing the Soot Load in Automotive Diesel Particulate Filters by Microwave Methods, Measurement Science and Technology 21, 035108. [CrossRef] [Google Scholar]
  • Fremerey P., Reiß S., Geupel A., Fischerauer G., Moos R. (2011) Determination of the NOx Loading of an Automotive Lean NOx Trap by Directly Monitoring the Electrical Properties of the Catalyst Material Itself, Sensors 11, 8261–8280. [CrossRef] [Google Scholar]
  • General Electric (2011) Accusolve Diesel Particulate Filter (DPF) Soot Sensor, Available at: http://www.ge-mcs.com/download/temperature/Accusolve_Soot_Sensor.pdf. [Google Scholar]
  • Gonze E.V., Kirby K.W., Phelps A., Gregoire D.J. (2010) Apparatus and Method for Onboard Performance Monitoring of Exhaust Gas Particulate Filter, US Patent Application US 2010/0180577A1. [Google Scholar]
  • Hagen G., Feistkorn C., Wiegärtner S., Heinrich A., Brüggemann D., Moos R. (2010) Conductometric Soot Sensor for Automotive Exhausts: Initial Studies, Sensors 10, 1589–1598. [CrossRef] [Google Scholar]
  • Hagen G., Piontkowski A., Müller A., Brüggemann D., Moos R. (2011) Locally resolved in-situ detection of the soot loading in Diesel particulate filters, IEEE SENSORS 2011 Conference, Limerick, Ireland. doi: 10.1109/ICSENS.2011.6126979. [Google Scholar]
  • Hansson J., Ingeström V. (2012) A Method for Estimating Soot Load in a DPF Using an RF-based Sensor, Master Thesis, U. of Linköping, Sweden, Available at: http://liu.diva-portal.org/smash/record.jsf?pid=diva2:535349.. [Google Scholar]
  • Harrington R.F. (1961) Time-Harmonic Electromagnetic Fields, McGraw-Hill, New York. [Google Scholar]
  • Izu N., Oh-hori N., Shin W., Matsubara I., Murayama N., Itou M. (2008) Response properties of resistive oxygen sensors using Ce1−xZrxO2 (x = 0.05, 0.10) thick films in propane combustion gas, Sensors and Actuators B: Chemical 130, 105–109. [CrossRef] [Google Scholar]
  • Johnson T. (2012) Vehicle Emissions Review – 2012, Directions in Engine-Efficiency and Emissions Research (DEER) Conference, Dearborn, Michigan, 16-19 Oct, Available at: https://www1.eere.energy.gov/vehiclesandfuels/pdfs/deer_2012/wednesday/presentations/deer12_johnson.pdf. [Google Scholar]
  • Kašpar J., Fornasiero P., Hickey N. (2003) Automotive catalytic converters: Current status and some perspectives, Catalysis Today 77, 419–449. [Google Scholar]
  • Klein O., Donovan S., Dressel M., Grüner G., Holczer K. (1993) Microwave Cavity Perturbation Technique: Part I-III, Int. J. of Infrared and Millimeter Waves 14, 12, 2423–2517. [CrossRef] [Google Scholar]
  • Knitt A.A., DeCou M.T. (2007) Radio frequency particulate sensing system, US Patent Specification US 7,253,641. [Google Scholar]
  • Koebel M., Elsener M., Kröcher O., Schär C., Röthlisberger R., Jaussi F., Mangold M. (2004) NOx Reduction in the Exhaust of Mobile Heavy-Duty Diesel Engines by Urea-SCR, Topics in Catalysis 43, 30–31. [Google Scholar]
  • Kröcher O., Devadas M., Elsener M., Wokaun A., Söger N., Pfeifer M., Demel Y., Mussmann L. (2006) Investigation of the selective catalytic reduction of NO by NH3 on Fe-ZSM5 monolith catalysts, Applied Catalysis B: Environmental 66, 208–216. [CrossRef] [Google Scholar]
  • Kubinski D.J., Visser J.H. (2008) Sensor and method for determining the ammonia loading of a zeolite SCR catalyst, Sensors and Actuators B: Chemical 130, 425–429. [CrossRef] [Google Scholar]
  • Kulkarni V.P., Leustek M.E., Michels S.K., Nair R.N., Snopko M.A., Knitt A.A. (2012) Ash Detection in Diesel Particulate Filter, US Patent Application US 2012/0017570 A1. [Google Scholar]
  • Matsumoto S. (2004) Recent advances in automobile exhaust catalysts, Catalysis Today 90, 183–190. [CrossRef] [Google Scholar]
  • Möller R., Votsmeier M., Onder C., Guzzella L., Gieshoff J. (2009) Is oxygen storage in three-way catalysts an equilibrium controlled process? Applied Catalysis B: Environmental 91, 30–38. [CrossRef] [Google Scholar]
  • Moos R. (2005) A Brief Overview on Automotive Exhaust Gas Sensors Based on Electroceramics, International Journal of Applied Ceramic Technology 2, 401–413. [CrossRef] [Google Scholar]
  • Moos R., Schönauer D. (2008) Recent Developments in the Field of Automotive Exhaust Gas Ammonia Sensing, Sensor Letters 6, 821–825. [CrossRef] [Google Scholar]
  • Moos R., Zimmermann C., Birkhofer T., Knezevic A., Plog C., Busch M.R., Ried T. (2008a) Sensor for Directly Determining the State of a NOx Storage Catalyst, SAE paper 2008-01-0447. [Google Scholar]
  • Moos R., Spörl M., Hagen G., Gollwitzer A., Wedemann M., Fischerauer G. (2008b) TWC: Lambda control and OBD without lambda probe - an initial approach, SAE paper 2008-01-0916. [Google Scholar]
  • Moos R., Wedemann M., Spörl M., Reiß S., Fischerauer G. (2009) Direct Catalyst Monitoring by Electrical Means: An Overview on Promising Novel Principles, Topics in Catalysis 52, 2035–2040. [CrossRef] [Google Scholar]
  • Moos R. (2010) Catalysts as Sensors—A Promising Novel Approach in Automotive Exhaust Gas Aftertreatment, Sensors 10, 6773–6787. [CrossRef] [Google Scholar]
  • Nova I., Ciardelli C., Tronconi E., Chatterjee D., Bandl-Konrad B. (2006) NH3–NO/NO2 chemistry over V-based catalysts and its role in the mechanism of the Fast SCR reaction, Catalysis Today 114, 3–12. [CrossRef] [Google Scholar]
  • Reiß S., Wedemann M., Moos R., Rösch M. (2009) Electrical in situ characterization of three-way catalyst coatings, Topics in Catalysis 52, 1898–1902. [CrossRef] [Google Scholar]
  • Reiß S., Spörl M., Hagen G., Fischerauer G., Moos R. (2011a) Combination of wirebound and microwave measurements for in-situ characterization of automotive three-way catalysts, IEEE Sensors Journal 11, 434–438. [CrossRef] [Google Scholar]
  • Reiß S., Fischerauer G., Moos R. (2011b) Radio frequency-based determination of the oxygen loading of automotive three-way catalysts, Sensor 2011, Nuremberg, Germany. doi: 10.5162/sensor11/d4.1. [Google Scholar]
  • Reiß S., Wedemann M., Spörl M., Fischerauer G., Moos R. (2011c) Effects of H2O, CO2, CO., and flow rates on the RF-based monitoring of three-way catalysts, Sensor Letters 9, 316–320. [CrossRef] [Google Scholar]
  • Reiß S., Schönauer D., Hagen G., Fischerauer G., Moos R. (2011d) Monitoring the ammonia loading of zeolite-based ammonia SCR catalysts by a microwave method, Chemical Engineering and Technology 34, 791–796. [CrossRef] [MathSciNet] [Google Scholar]
  • Reiß S. (2012) Direkte Zustandssensorik von Automobilabgaskatalysatoren, R. Moos G. Fischerauer (Hrsg.), Bayreuther Beiträge zur Sensorik und Messtechnik, 9, Shaker-Verlag, Aachen. Thesis, Universität Bayreuth. [Google Scholar]
  • Riegel J., Neumann H., Wiedenmann H.-M. (2002) Exhaust Gas Sensors for Automotive Emission Control, Solid State Ionics 152-153, 783–800. [CrossRef] [Google Scholar]
  • Rodríguez-González L., Simon U. (2010) NH3-TPD measurements using a zeolite-based sensor, Measurement Science and Technology 21, 027003. [CrossRef] [Google Scholar]
  • Rose D., Boger T. (2009) Different Approaches to Soot Estimation as Key Requirement for DPF Applications, SAE paper 2009-01-1262. [Google Scholar]
  • Sappok A., Bromberg L., Parks J., Prikhodko V. (2010) Loading and Regeneration Analysis of a Diesel Particulate Filter with a Radio Frequency-Based Sensor, SAE paper 2010-01-2126. [Google Scholar]
  • Schuler A., Votsmeier M., Kiwic P., Gieshoff J., Hauptmann W., Drochner A., Vogel H. (2009) NH3-SCR on Fe zeolite catalysts – From model setup to NH3 dosing, Chemical Engineering Journal 154, 333–340. [CrossRef] [Google Scholar]
  • Shelef M., McCabe R.W. (2000) Twenty-five years after introduction of automotive catalysts: What next? Catalysis Today 62, 35–50. [Google Scholar]
  • Simon U., Flesch U., Maunz W., Müller R., Plog C. (1998) The effect of NH3 on the ionic conductivity of dehydrated zeolites Na beta and H beta, Microporous and Mesoporous Materials 21, 111–116. [CrossRef] [Google Scholar]
  • Sucher M., Fox J. (1963) Handbook of Microwave Measurements, Polytech. Inst. Brooklyn, 3rd ed., Brooklyn. [Google Scholar]
  • Takeuchi M., Matsumoto S. (2004) NOx storage-reduction catalysts for gasoline engines, Topics in Catalysis 28, 151–156. [CrossRef] [Google Scholar]
  • Twigg M.V. (2007) Progress and future challenges in controlling automotive exhaust gas emissions, Applied Catalysis B: Environmental 70, 2–15. [Google Scholar]
  • Twigg M.V., Phillips P.R. (2009) Cleaning the air we breathe—Controlling Diesel particulate emissions from passenger cars, Platinum Metals Review 53, 27–34. [CrossRef] [Google Scholar]
  • Walton F.B. (2007) Method and system for detecting soot and ash concentrations in a filter, US Patent Specification US 7,157,919. [Google Scholar]
  • Zhuiykov S., Miura N. (2007) Development of zirconia-based potentiometric NOx sensors for automotive and energy industries in the early 21st century: What are the prospects for sensors? Sensors and Actuators B: Chemical 121, 639–651. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.