Dossier: Post Combustion CO2 Capture
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 69, Number 6, November-December 2014
Dossier: Post Combustion CO2 Capture
Page(s) 1005 - 1020
DOI https://doi.org/10.2516/ogst/2013163
Published online 17 December 2013
  • Baker R. (2004) Membrane technology and applications, J. Wiley, Chichester, New York. [CrossRef] [Google Scholar]
  • Barillas M.K., Enick R.M., O’Brien M., Perry R., Luebke D.R., Morreale B.D. (2011) The CO2 permeability and mixed gas CO2/H2 selectivity of membranes composed of CO2-philic polymers, Journal Membrane Science 372, 1-2, 29–39. [CrossRef] [Google Scholar]
  • Belaissaoui B., Willson D., Favre E. (2012a) Membrane gas separations and post-combustion CO2 capture: parametric sensitivity and process integration strategies, Chemical Engineering Journal 211-212, 122–132. [CrossRef] [Google Scholar]
  • Belaissaoui B., Cabot G., Cabot M.S., Willson D., Favre E. (2012b) An energetic analysis of CO2 capture on a gas turbine combining flue gas recirculation and membrane separation, Energy 38, 167–175. [CrossRef] [Google Scholar]
  • Belaissaoui B., Le Moullec Y., Willson D., Favre E. (2012c) Hybrid Membrane cryogenic process for post-combustion CO2 capture, Journal Membrane Science 415-416, 424–434. [CrossRef] [Google Scholar]
  • Bhown A.S., Freeman B.C. (2011) Analysis and status of post-combustion carbon dioxide capture technologies, Environmental Science Technology 45, 8624–8632. [CrossRef] [Google Scholar]
  • Bounaceur N., Lape N., Roizard D., Vallières C., Favre E. (2006) Membrane processes for post-combustion carbon dioxide capture: a parametric study, Energy 31, 2556–2570. [CrossRef] [Google Scholar]
  • Budd P.M., McKeown N.B., Ghanem B.S., Msayib K.J., Fritsch D., Starannikova L., Belov N., Sanfirova O., Yampolskii Y., Shantarovich V. (2008) Gas permeation parameters and other physicochemical properties of a polymer of intrinsic microporosity: Polybenzodioxane PIM-1, Journal Membrane Science 325, 851–860. [CrossRef] [Google Scholar]
  • Chowdhury M.H.M., Feng X., Douglas P., Croiset E. (2005) A new numerical approach for a detailed multicomponent gas separation membrane model and Aspen plus simulation, Chemical Engineering Technology 28, 773–782. [CrossRef] [Google Scholar]
  • Coker D.T., Allen T., Fleming G.K. (1999) Nonisothermal model for gas separation hollow fiber membranes, AIChE Journal 45, 1451–1468. [CrossRef] [Google Scholar]
  • Davidson O., Metz B. (2005) Special Report on Carbon Dioxide Capture and Storage, International Panel on Climate Change, Geneva, Switzerland, (www.ipcc.ch). [Google Scholar]
  • Deng L., Hägg M.B. (2010) Swelling behavior and gas permeation performance of PVAm/PVA blend FSC membrane, Journal Membrane Science 363, 1-2, 295–301. [CrossRef] [Google Scholar]
  • Deng L., Kim T.-J., Hagg M.-B. (2009) Facilitated transport of CO2 in novel PVAm/PVA blend membrane, J. Membrane Sci. 340, 154–163. [CrossRef] [Google Scholar]
  • Deschamps P., Pilavachi P.A. (2004) Research and development actions to reduce CO2 emissions within the European Union, Oil Gas Science Technology 59, 3, 323–30. [CrossRef] [EDP Sciences] [Google Scholar]
  • Dhingra S., Marand E. (1998) Mixed gas transport study through polymeric membranes, Journal Membrane Science 141, 45–63. [CrossRef] [Google Scholar]
  • Du N., Park H.B., Robertson G.P., Dal-Cin M.M., Visser T., Scoles L., Guiver M.D. (2011) Polymer nanosieve membranes for CO2-capture applications, Nature Materials 10, 372–375. [CrossRef] [PubMed] [Google Scholar]
  • Ebner A.D., Ritter J.A. (2009) State, state-of-the art adsorption and membrane separation processes for carbon dioxide production from carbon dioxide Emitting industries, Separation Science Technology 44, 1273–1421. [CrossRef] [Google Scholar]
  • El-Azzami L.A., Grulke E.A. (2008) Carbon dioxide separation from hydrogen and nitrogen by fixed facilitated transport in swollen chitosan membranes, Journal Membrane Science 323, 2, 225–234. [CrossRef] [Google Scholar]
  • Favre E. (2007) Carbon dioxide recovery from post combustion processes: Can gas permeation membranes compete with absorption? Journal of Membrane Science 294, 50–59. [CrossRef] [Google Scholar]
  • Favre E., Bounaceur R., Roizard D. (2009) A hybrid process combining oxygen enriched air combustion and membrane separation for postcombustion carbon dioxide capture, Separation Purification Technology 68, 30–36. [CrossRef] [Google Scholar]
  • Figueroa J.D., Fout T., Plasynski S., McIlvried H., Srivastava R.D. (2008) Advances in CO2 capture technology — The U.S. Department of Energy’s Carbon Sequestration Program, International Journal of Greenhouse Gas Control 2, 1, 9–20. [CrossRef] [Google Scholar]
  • Francisco G.J., Chakma A., Feng X. (2010) Separation of carbon dioxide from nitrogen using diethanolamine-impregnated poly(vinyl alcohol) membranes, Separation Purification Technology 71, 2, 205–213. [CrossRef] [Google Scholar]
  • Franz J., Schiebahn S., Zhao L., Riensche E., Scherer V., Stolten D. (2013) Investigating the influence of sweep gas on CO2/N2 membranes for post-combustion capture, International Journal Greenhouse Gas Control 13, 180–190. [CrossRef] [Google Scholar]
  • Freeman B. (1999) Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes, Macromolecules 32, 375–380. [CrossRef] [Google Scholar]
  • Hagg M.B., Sandru M., Kim T.J., Capala W., Huijbers M. (2012) Report on pilot scale testing and further development of a facilitated transport membrane for CO2 capture from power plants, Euromembrane 2012, London, UK, 23-27 Sept. [Google Scholar]
  • Hendriks C., Visser E., Jansen D., Carbo M., Ruijg G.J., Davison J. (2009) Capture of CO2 from medium-scale emission sources, Energy Procedia 1, 1, 1497–1504. [CrossRef] [Google Scholar]
  • Herzog H. (1991) Feasibility, modeling and economics of sequestering power plant CO2 emissions in the deep ocean, Environmental Progress 10, 64–74. [CrossRef] [Google Scholar]
  • Herzog H. (2001) What future for carbon capture and sequestration? Environmental Science Technology 35, 148A–153A. [CrossRef] [Google Scholar]
  • Ho M.T., Allinson G., Wiley D.E. (2006) Comparison of CO2 separation options for geo-sequestration: are membranes competitive? Desalination 192, 1-3, 288–295. [CrossRef] [Google Scholar]
  • Ho M.T., Allinson G.W., Wiley D.E. (2008) Reducing the cost of CO2 capture, from flue gases using membrane technology, Industrial Engineering Chemistry Research 47, 1562–1568. [CrossRef] [Google Scholar]
  • Huang J., Zou J., Ho W.S.W. (2008) Carbon dioxide capture using a CO2-selective facilitated transport membrane, Ind. Eng. Chem. Res. 47, 1261–1267. [CrossRef] [Google Scholar]
  • Hughes R., Jiang B. (1995) The permeabilities of carbon dioxide, nitrous oxide and oxygen and their mixtures through silicone rubber and cellulose acetate membranes, Gas Separation Purification 9, 27–30. [CrossRef] [Google Scholar]
  • Jeon J.K., Ihm S.K., Park Y.K., Kim J.S., Dong J.I., Kim S., Kim J.M., Kim S., Yoo K.S. (2004) Membrane/PSA hybrid process for carbon dioxide recovery at low concentration, Studies Surface Science Catalysis 153, 543–546. [CrossRef] [Google Scholar]
  • Kaldis S.P., Kapantaidakis G.C., Sakellaropoulos G.P. (2000) Simulation of multicomponent gas separation in a hollow fiber membrane by orthogonal collocation – Hydrogen recovery from refinery gases, Journal Membrane Science 173, 61–71. [CrossRef] [Google Scholar]
  • Kim J.H., Lee Y.M. (2001) Gas permeation properties of poly(amide-6-b-ethylene oxide)–silica hybrid membranes, Journal Membrane Science 193, 2, 209–225. [CrossRef] [Google Scholar]
  • Kim T.-J., Vralstad H., Sandru M., Hagg M.-B. (2013) Separation performance of PVAm composite membrane for CO2 capture at various pH levels, Journal Membrane Science 428, 218–224. [CrossRef] [Google Scholar]
  • Koros W. (1993) Membrane-based gas separation, Journal Membrane Science 83, 1–80. [CrossRef] [Google Scholar]
  • Kotowicz J., Bartela L. (2012) Optimisation of the connection of membrane CCS installation with a supercritical coal-fired power plant, Energy 38, 1, 118–127. [CrossRef] [Google Scholar]
  • Krishna R., van Baten J.M. (2011) Investigating the potential of MgMOF-74 membranes for CO2 capture, Journal Membrane Science 377, 1-2, 249–260. [CrossRef] [Google Scholar]
  • Krishna R., van Baten J.M. (2012) A comparison of the CO2 capture characteristics of zeolites and metal–organic frameworks, Separation Purification Technology 87, 5, 120–126. [CrossRef] [Google Scholar]
  • Lie J.A., Vassbotn T., Hagg M.B., Grainger D., Kim T.J., Mejdell T. (2007) Optimization of a membrane process for CO2 capture in the steelmaking industry, International Journal Greenhouse Gas Control 1, 309–317. [CrossRef] [Google Scholar]
  • Liu L., Chakma A., Feng X. (2005) CO2/N2 separation by poly(Ether Block Amide) Thin Film Hollow fiber composite membranes, Ind. Eng. Chem. Res. 44, 6874–6882. [CrossRef] [Google Scholar]
  • Low B.T., Zhao L., Merkel T.C., Weber M., Stolten D. (2013) A parametric study of the impact of membrane materials and process operating conditions on carbon capture from humidified flue gas, Journal Membrane Science 431, 139–155. [CrossRef] [Google Scholar]
  • Luis P., Van Gerven T., Van der Bruggen B. (2012) Recent developments in membrane-based technologies for CO2 capture, Progress Energy Combustion Science 38, 3, 419–448. [CrossRef] [Google Scholar]
  • Lynghjem A., Jakobsen J., Kobro H., Lund A., Gjerset M. (2004) The Combicap cycle-efficient combined cycle power plant with CO2 capture, 2nd Trondheim Conference on CO2 Capture, Trondheim, Norway, 24-25 Oct. [Google Scholar]
  • Matson S. (1983) Separation of gases with synthetic membranes, Chemical Engineering Science 38, 503–524. [CrossRef] [Google Scholar]
  • Matsumiya N., Teramoto M., Kitada S., Matsuyama H. (2005) Evaluation of energy consumption for separation of CO2 in flue gas by hollow fiber facilitated transport membrane module with permeation of amine solution, Separation Purification Technology 46, 26–32. [CrossRef] [Google Scholar]
  • Matsuyama H., Terada A., Nakagawara T., Kitamura Y., Teramoto M. (1999) Facilitated transport of CO2 through polyethylenimine/poly(vinyl alcohol) blend membrane, J. Membrane Sci. 163, 221–227. [CrossRef] [Google Scholar]
  • Merkel T., Lin H., Wei X., Baker R. (2010) Power plant post-combustion carbon dioxide capture: An opportunity for membranes, Journal Membrane Science 359, 1-2, 126–139. [CrossRef] [Google Scholar]
  • Metz S.J., Mulder M.H.V., Wessling M. (2004) Gas permeation properties of poly(ethylene oxide) poly(butylenes terephtalate) block copolymers, Macromolecules 37, 4590–4597. [CrossRef] [Google Scholar]
  • Petzold L.R. (1983) A description of DASSL: A differential/algebraic system solver, in Scientific Computing, Stepleman R.S. et al. (eds), North-Holland, Amsterdam. [Google Scholar]
  • Ramasubramanian K., Winston Ho W.S. (2011) Recent developments on membranes for post-combustion carbon capture, Current Opinion Chemical Engineering 1, 1, 47–54. [CrossRef] [Google Scholar]
  • Robeson Lloyd M. (2008) The upper bound revisited, Journal Membrane Science 320, 1-2, 390–400. [CrossRef] [Google Scholar]
  • Sandru M., Haukebø S.H., Hägg M.-B. (2010) Composite hollow fiber membranes for CO2 capture, Journal Membrane Science 346, 1, 172–186. [CrossRef] [Google Scholar]
  • Sandru M., Kim T.-J., Capala W., Huijbers M., Hagg M.-B. (2012) Pilot scale testing of polymeric membranes for CO2 capture from coal fired power plants, GHGT11, Kyoto, Japan, Nov. [Google Scholar]
  • Scholes C.A., Stevens G.W., Kentish S.E. (2010) The effect of hydrogen sulfide, carbon monoxide and water on the performance of a PDMS membrane in carbon dioxide/nitrogen separation, Journal Membrane Science 350, 189–199. [CrossRef] [Google Scholar]
  • Sheinbaum C., Ozawa L. (1998) Energy use and CO2 emissions for cement industry, Energy 23, 725–732. [CrossRef] [Google Scholar]
  • Skorek-Osikowska A., Kotowicz J., Janusz-Szymanska K. (2013) Comparison of the energy intensity of selected CO2 capture methods applied to ultra-supercritical coal power plants, Energy Fuels, doi: 10.1021/ef201687d. [Google Scholar]
  • Steeneveldt R., Berger B., Torp T.A. (2006) CO2 capture and storage: closing the knowing doing gap, Chemical Engineering Research Development 84-A9, 739–763. [CrossRef] [Google Scholar]
  • Van der Sluijs J.P., Hendriks C.A., Block K. (1992) Feasibility of polymer membranes for carbon dioxide recovery from flue gases, Energy Conversion Management 33429–33436. [Google Scholar]
  • White J.C., Dutta P.K., Shqau K., Verweij H. (2010) Synthesis of ultrathin zeolite Y membranes and their application for separation of carbon dioxide and nitrogen gases, Langmuir 26, 10287–10293. [CrossRef] [PubMed] [Google Scholar]
  • Xomeritakis G., Tsai C.Y., Brinker C.J. (2005) Microporous sol-gel derived aluminosilicate membrane for enhanced carbon dioxide separation, Separation Purification Technology 42, 249–257. [CrossRef] [Google Scholar]
  • Xomeritakis G., Liu N.G., Chen Z., Jiang Y.-B., Köhn R., Johnson P.E., Tsai C.-Y., Shah P.B., Khalil S., Singh S., Brinker C.J. (2007) Anodic alumina supported dual-layer microporous silica membranes, Journal Membrane Science 287, 2, 157–161. [CrossRef] [Google Scholar]
  • Yave W., Szymczyk A., Yave N., Roslaniec Z. (2010a) Design, synthesis, characterization and optimization of PTT-b-PEO copolymers: A new membrane material for CO2 separation, Journal Membrane Science 362, 1-2, 407–416. [CrossRef] [Google Scholar]
  • Yave W., Car A., Peinemann K.V. (2010b) Nanostructured membrane material designed for carbon dioxide separation, Journal Membrane Science 350, 124–129. [CrossRef] [Google Scholar]
  • Zanderighi L. (1996) Evaluation of the performance of multistage membrane separation cascades, Separation Science Technology 31, 1291–1308. [CrossRef] [Google Scholar]
  • Zha H., Rubin E.S. (2013) Techno-economic assessment of polymer membrane systems for postcombustion carbon capture at coal-fired power plants, Environmental Science Technology 47, 6, 3006–3014. [CrossRef] [Google Scholar]
  • Zhang Y.-T., Zhang L., Chen H.-L., Zhang H.-M. (2010) Selective separation of low concentration CO2 using hydrogel immobilized CA enzyme based hollow fiber membrane reactors, Chemical Engineering Science 65, 10, 3199–3207. [CrossRef] [Google Scholar]
  • Zhao L., Riensche E., Menzer R., Blum L., Stolten D. (2008) A parametric study of CO2/N2 gas separation membrane processes for post-combustion capture, Journal Membrane Science 325, 284–294. [CrossRef] [Google Scholar]
  • Zhao L., Menzer R., Riensche E., Blum L., Stolten D. (2010) Multi-stage gas separation membrane processes with post-combustion capture: energetic and economic analyses, Journal Membrane Science 359, 160–172. [CrossRef] [Google Scholar]
  • Zolandz R., Fleming G.K. (1995) Gas permeation applications, in Membrane Handbook, Ho W.S., Sirkar K.K. (eds),Van Nostrand Reinhold, New York. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.