Dossier: Post Combustion CO2 Capture
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 69, Number 5, September-October 2014
Dossier: Post Combustion CO2 Capture
Page(s) 931 - 945
DOI https://doi.org/10.2516/ogst/2013160
Published online 17 December 2013
  • Ahn C.K., Han K., Lee M.S., Kim J.Y., Chun H.D., Kim Y., Park J.M. (2012) Experimental studies of additives for suppression of ammonia vaporization in the ammonia based CO2 capture process, 11st International Conference on Greenhouse Gas Control Technologies (GHGT-11), Kyoto, Japan, 18-22 Nov. [Google Scholar]
  • AspenTechnology (2012) Aspen Plus® v7.3, Cambridge MA, USA. [Google Scholar]
  • Bai H., Yeh A.C. (1997) Removal of CO2 greenhouse gas by ammonia scrubbing, Ind. Eng. Chem. Res. 36, 2490–2493. [CrossRef] [Google Scholar]
  • Budzianowski W.M. (2011) Mitigating NH3 vaporization from an aqueous ammonia process for CO2 capture, Int. J. Chem. React. Eng. 9, A58. [Google Scholar]
  • Ciferno J.P., Di Pietro P., Tarka T. (2005) An economic scoping study for CO2 capture using aqueous ammonia, DOE/NETL Final Report. [Google Scholar]
  • Darde V., Thomsen K., van Well W.J.M., Stenby E.H. (2009) Chilled ammonia process for CO2 capture, Energy Procedia 1, 1035–1042. [CrossRef] [Google Scholar]
  • Darde V., van Well W.J.M., Fosboel P.L., Stenby E.H., Thomsen K. (2011) Experimental measurement and modeling of the rate of absorption of carbon dioxide by aqueous ammonia, Int. J. Greenhouse Gas Control 5, 1149–1162. [CrossRef] [Google Scholar]
  • Darde V., Maribo-Mogensen B., van Well W.J.M., Stenby E.H., Thomsen K. (2012) Process simulation of CO2 capture with aqueous ammonia using the extended UNIQUAC model, Int. J. Greenhouse Gas Control 10, 74–87. [CrossRef] [Google Scholar]
  • Dave N., Do T., Puxty G., Rowland R., Feron P.H.M., Attalla M.I. (2009) CO2 capture by aqueous amines and aqueous ammonia – A Comparison, Energy Procedia 1, 949–954. [CrossRef] [Google Scholar]
  • Derks P.W.J., Versteeg G.F. (2009) Kinetics of absorption of carbon dioxide in aqueous ammonia solutions, Energy Procedia 1, 1139–1146. [CrossRef] [Google Scholar]
  • EPRI (2006) Chilled ammonia post combustion CO2 capture system – Laboratory and economic evaluation results, Palo Alto, CA. [Google Scholar]
  • Fernandes D., Conway W., Burns R., Lawrance G., Maeder M., Puxty G. (2012) Investigations of primary and secondary amine carbamate stability by H-1 NMR spectroscopy for post combustion capture of carbon dioxide, J. Chem. Thermodyn. 54, 183–191. [CrossRef] [Google Scholar]
  • Gal E., Bade O.M., Jayaweera I., Gopala K. (2011) Promoter enhanced chilled ammonia based system and method for removal of CO2 from flue gas, USP 7,862,788, ALSTOM Technology Ltd. [Google Scholar]
  • Jilvero H., Normann F., Andersson K., Johnsson F. (2012) Heat requirement for regeneration of aqueous ammonia in post-combustion carbon dioxide capture, Int. J. Greenhouse Gas Control 11, 181–187. [CrossRef] [Google Scholar]
  • Jönsson S., Telikapalli V. (2012) Chilled Ammonia Process installed at the Technology Center Mongstad, 11st International Conference on Greenhouse Gas Control Technologies (GHGT-11), Kyoto, Japan, 18-22 Nov. [Google Scholar]
  • Lia M., Chen X., Hiwale R., Vitse F. (2012) Rate based modeling of chilled ammonia process (CAP) Absorber in Aspen Plus, 11st International Conference on Greenhouse Gas Control Technologies (GHGT-11), Kyoto, Japan, 18-22 Nov. [Google Scholar]
  • Linnenberg S., Darde V., Oexmann J., Kather A., van Well W.J.M., Thomsen K. (2012) Evaluating the impact of an ammonia-based post-combustion CO2 capture process on a steam power plant with different cooling water temperatures, Int. J. Greenhouse Gas Control 10, 1–14. [CrossRef] [Google Scholar]
  • Liu J., Wang S., Qi G., Zhao B., Chen C. (2011) Kinetics and mass transfer of carbon dioxide absorption into aqueous ammonia, Energy Procedia 4, 525–532. [CrossRef] [Google Scholar]
  • MacDowell N., Florin N., Buchard A., Hallett J., Galindo A., Jackson G., Adjiman C.S., Williams C.K., Shah N., Fennell P. (2010) An overview of CO2 capture technologies, Energ. Environ. Sci. 3, 1645–1669. [CrossRef] [Google Scholar]
  • Mathias P.M., Reddy S., O’Connell J.P. (2010) Quantitative evaluation of the chilled-ammonia process for CO2 capture using thermodynamic analysis and process simulation, Int. J. Greenhouse Gas Control 4, 174–179. [CrossRef] [Google Scholar]
  • Maurer G. (2011) Phase equilibria in chemical reactive fluid mixtures, J. Chem. Thermodyn. 43, 147–160. [CrossRef] [Google Scholar]
  • McLarnon C.R., Duncan J.L. (2009) Testing of ammonia based CO2 capture with multi-pollutant control technology, Energy Procedia 1, 1027–1034. [CrossRef] [Google Scholar]
  • Niu Z.Q., Guo Y.C., Zeng Q., Lin W.Y. (2012) Experimental studies and rate-based process simulations of CO2 absorption with aqueous ammonia solutions, Ind. Eng. Chem. Res. 51, 5309–5319. [CrossRef] [Google Scholar]
  • Puxty G., Rowland R., Allport A., Yang Q., Bown M., Burns R., Maeder M., Attalla M. (2009) Carbon dioxide postcombustion capture: A novel screening study of the carbon dioxide absorption performance of 76 amines, Environ. Sci. Technol. 43, 6427–6433. [CrossRef] [PubMed] [Google Scholar]
  • Qi G., Wang S., Yu H., Wardhaugh L., Feron P., Chen C. (2013) Development of a rate based model for CO2 absorption using aqueous ammonia NH3 in a packed column, Submitted to International Journal of Greenhouse Gas Control 17, 450–461. [CrossRef] [Google Scholar]
  • Qin F., Wang S.J., Hartono A., Svendsen H.F., Chen C.H. (2010) Kinetics of CO2 absorption in aqueous ammonia solution, Int. J. Greenhouse Gas Control 4, 729–738. [CrossRef] [Google Scholar]
  • Que H.L., Chen C.C. (2011) Thermodynamic modeling of the NH3-CO2-H2O system with electrolyte NRTL model, Ind. Eng. Chem. Res. 50, 11406–11421. [CrossRef] [Google Scholar]
  • Rhee C.H., Kim J.Y., Han K., Ahn C.K., Chun H.D. (2011) Process analysis for ammonia-based CO2 capture in ironmaking industry, Energy Procedia 4, 1486–1493. [CrossRef] [Google Scholar]
  • Salentinig S., Jackson P., Attalla M. (2012) Strategic Vapor Suppressing Additives for Ammonia Based CO2 Capture Solvent, 11st International Conference on Greenhouse Gas Control Technologies (GHGT-11), Kyoto, Japan, 18-22 Nov. [Google Scholar]
  • Telikapalli V., Kozak F., Francois J., Sherrick B., Black J., Muraskin D., Cage M., Hammond M., Spitznogle G. (2011) CCS with the Alstom chilled ammonia process development program – Field pilot results, Energy Procedia 4, 273–281. [CrossRef] [Google Scholar]
  • Thomsen K., Rasmussen P. (1999) Modeling of vapor–liquid–solid equilibrium in gas–aqueous electrolyte systems, Chem. Eng. Sci. 54, 1787–1802. [CrossRef] [Google Scholar]
  • Valenti G., Bonalumi D., Macchi E. (2012) A parametric investigation of the Chilled Ammonia Process from energy and economic perspectives, Fuel 101, 74–83. [CrossRef] [Google Scholar]
  • Versteeg G.F., Van Dijck L.A.J., Van Swaaij W.P.M. (1996) On the kinetics between CO2 and alkanolamines both in aqueous and non-aqueous solutions. An overview, Chem. Eng. Commun. 144, 113–158. [CrossRef] [Google Scholar]
  • Versteeg P., Rubin E.S. (2011) A technical and economic assessment of ammonia-based post-combustion CO2 capture at coal-fired power plants, Int. J. Greenhouse Gas Control 5, 1596–1605. [CrossRef] [Google Scholar]
  • Wang X., Conway W., Fernandes D., Lawrance G., Burns R., Puxty G., Maeder M. (2011) Kinetics of the reversible reaction of CO2(aq) with ammonia in aqueous solution, J. Phys. Chem. A 115, 6405–6412. [CrossRef] [PubMed] [Google Scholar]
  • Yu H., Morgan S., Allport A., Cottrell A., Do T., McGregor J., Wardhaugh L., Feron P. (2011a) Results from trialling aqueous NH3 based post-combustion capture in a pilot plant at Munmorah power station: Absorption, Chem. Eng. Res. Des. 89, 1204–1215. [CrossRef] [Google Scholar]
  • Yu H., Morgan S., Allport A., Cottrell A., Do T., McGregor J., Feron P. (2011b) Results from trialling aqueous ammonia based post combustion capture in a pilot plant at Munmorah, Energy Procedia 4, 1294–1302. [CrossRef] [Google Scholar]
  • Yu H., Qi G., Wang S., Morgan S., Allport A., Cottrell A., Do T., McGregor J., Wardhaugh L., Feron P. (2012a) Results from trialling aqueous ammonia-based post-combustion capture in a pilot plant at Munmorah Power Station: Gas purity and solid precipitation in the stripper, Int. J. Greenhouse Gas Control. 10, 15–25. [CrossRef] [Google Scholar]
  • Yu H., Xiang Q., Fang M., Yang Q., Feron P. (2012b) Promoted CO2 absorption in aqueous ammonia, Greenhouse Gas Sci. Technol. 2, 200–208. [CrossRef] [Google Scholar]
  • Yu H., Qi G., Xiang Q., Wang S., Fang M., Yang Q., Wardhaugh L., Feron P. (2012c) Aqueous Ammonia Based Post Combustion Capture: Results from pilot plant operation, challenges and further opportunities, 11st International Conference on Greenhouse Gas Control Technologies (GHGT-11), Kyoto, Japan, 18-22 Nov. [Google Scholar]
  • Zhao B.T., Su Y.X., Tao W.W., Li L.L., Peng Y.C. (2012) Post-combustion CO2 capture by aqueous ammonia: A state-of-the-art review, Int. J. Greenhouse Gas Control 9, 355–371. [CrossRef] [Google Scholar]
  • Zhuang Q., Clements B., Li Y. (2012) From ammonium bicarbonate fertilizer production process to power plant CO2 capture, Int. J. Greenhouse Gas Control 10, 56–63. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.