- Crini G. (2006) Non-conventional low-cost adsorbents for dye removal: A review, Bioresour. Technol. 97, 1061–1085. [Google Scholar]
- Wu F.C., Tseng R.L. (2008) High adsorption capacity NaOH-activated carbon for dye removal from aqueous solution, J. Hazard Mater. 152, 1256–1267. [CrossRef] [PubMed] [Google Scholar]
- McKay G., Otterburn M.S., Aga D.A. (1985) Fullers earth and Fired clay as adsorbent for dye stuff, equilibrium and rate constants, Water Air Soil Pollut. 24, 307–322. [CrossRef] [Google Scholar]
- Gregory A.R., Elliot S., Khuge P. (1991) Ames testing of direct black 3B parallel carcinogenecity, J. Appl. Toxicol. 1, 308–313. [CrossRef] [Google Scholar]
- Liakou S., Pavlou S., Lyberatos G. (1997) Ozonation of azo dyes, Water Sci. Technol. 35, 279–286. [CrossRef] [Google Scholar]
- Solozhenko E.G., Soboleva N.M., Goncharuk V.V. (1995) Decolourization of azodye solutions by Fenton’s oxidation, Water Res. 29, 2206–2210. [CrossRef] [Google Scholar]
- Lin S.H., Peng C.F. (1994) Treatment of textile wastewater by electrochemical method, Water Res. 28, 277–282. [CrossRef] [Google Scholar]
- Walker G.M., Weatherley L.R. (1997) Adsorption of acid dyes onto granular activated carbon in fixed beds, Water Res. 31, 2099–2101. [CrossRef] [Google Scholar]
- Yang X.Y., Al-Duri B. (2001) Application of branched pore diffusion model in the adsorption of reactive dyes on activated carbon, Chem. Eng. J. 83, 15–23. [CrossRef] [Google Scholar]
- Karaca S., Gürses A., Açikyildiz M., Ejder M. (2008) Adsorption of cationic dye from aqueous solutions by activated carbon, Microporous Mesoporous Materials 115, 376–382. [CrossRef] [Google Scholar]
- Kannan N., Sundaram M.M. (2001) Kinetics and mechanism of removal of methylene blue by adsorption on various carbons – a comparative study, J. Dyes Pig. 51, 25–40. [CrossRef] [Google Scholar]
- Walker G.M., Weatherley L.R. (1998) Fixed bed adsorption of acid dyes onto activated carbon, Environ Pollution 99, 133–136. [CrossRef] [Google Scholar]
- Jia-Ming C., Chia-Yuan W. (2001) Desorption of dye from activated carbon beds: effects of temperature, pH, and alcohol, Water Res. 35, 4159–4165. [CrossRef] [PubMed] [Google Scholar]
- Ho Y.S., Chiang C.C. (2001) Sorption studies of acid dye by mixed sorbents, Adsorption-Journal International Adsorption Society 7, 139–147. [CrossRef] [Google Scholar]
- Dogan M., Alkan M. (2003) Adsorption kinetics of methyl violet onto perlite, Chemosphere 50, 517–528. [CrossRef] [PubMed] [Google Scholar]
- Ghosh D., Bhattacharyya K.G. (2002) Adsorption of methylene blue on kaolinite, Appl. Clay. Sci. 20, 295–300. [CrossRef] [Google Scholar]
- Rytwo G., Tropp D., Serban C. (2002) Adsorption of diquat, paraquat and methyl green on sepiolite: experimental results and model calculations, Appl. Clay Sci. 20, 273–282. [CrossRef] [Google Scholar]
- Benkli Y.E., Can M.F., Turan M., Celik M.S. (2005) Modification of organo-Zeolite surface for the removal of reactive azo dyes in fixed-bed reactors, Water Research 39, 487–493. [CrossRef] [PubMed] [Google Scholar]
- McKay G., El Geundi M., Nassar M.M. (1988) External mass transport processes during the adsorption of dyes onto bagasse pith, Water Res. 22, 1527–1533. [CrossRef] [Google Scholar]
- Robinson T., Chandran B., Nigam P. (2002) Removal of dyes from an artificial textile dye effluent by two agricultural waste residues, corncob and barley husk, Environ. Int. 28, 29–33. [CrossRef] [PubMed] [Google Scholar]
- Annadurai G., Juang R.S., Lee D.J. (2002) Use of cellulose-based wastes for adsorption of dyes from aqueous solutions, J. Hazard. Mater. B 92, 263–274. [CrossRef] [Google Scholar]
- Wang C.C., Juang L.C., Hsu T.C., Lee C.K., Lee J.F., Huang F.C. (2004) Adsorption of Basic Dyes onto Montmorillonite, J. Colloid Interface Sci. 273, 80–86. [CrossRef] [PubMed] [Google Scholar]
- Jain A.K., Gupta V.K., Bhatnagar A., Suhas (2003) Utilization of industrial waste products as adsorbents for the removal of dyes, J. Hazard. Mater. 101, 31–42. [CrossRef] [PubMed] [Google Scholar]
- Moussavi G., Khosravi R. (2011) The removal of cationic dyes from aqueous solutions by adsorption onto pistachio hull waste, Chemical Engineering Research Design 89, 2182–2189. [CrossRef] [Google Scholar]
- Gong R.M., Li M., Yang C., Sun Y.Z., Chen J. (2005) Removal of cationic dyes from aqueous solution by adsorption on peanut hull, J. Hazard Mater. B 121, 247–250. [CrossRef] [Google Scholar]
- Espantaleón A.G., Nieto J.A., Fernández M., Marsal A. (2003) Use of activated clays in the removal of dyes, Appl. Clay Sci. 24, 105–110. [CrossRef] [Google Scholar]
- Al-Asheh S., Banat F., Abu-Aitah L. (2003) The removal of methylene blue dye from aqueous solutions using activated and non-activated bentonites, Adsorpt. Sci. Technol. 21, 451–462. [CrossRef] [Google Scholar]
- Brunauer S., Emmett P.H., Teller E. (1938) Adsorption of gases in multimotecular layers, J. Am. Chem. Soc. 60, 309–310. [Google Scholar]
- Schweich D., Sardin M. (1981) Adsorption, partition, ion exchange and chemical reaction in batch reactors or in columns – a review, J. Hydrology 50, 1–33. [CrossRef] [Google Scholar]
- Jada A., Ait Akbour R., Douch J. (2006) Surface charge and adsorption from water onto quartz sand of humic acid, Chemosphere 64, 1287–1295. [CrossRef] [PubMed] [Google Scholar]
- Elimelech M., Gregory Y., Jia X., Williams R. (1995) Particle deposition and aggregation: Measurement, modeling and simulation, Butterworth-Heinemann, Oxford. [Google Scholar]
- Bueno M. (1999) Étude dynamique des processus de sorption–désorption du tributylétain sur un milieu poreux d’origine naturelle, Thèse de Doctorat, Université de Pau et des Pays de l’Adour. [Google Scholar]
- Johnson P.R., Sun N., Elimelech M. (1996) Colloid Transport in Geochemically Heterogeneous Porous Media: Modeling and Measurements, Environ. Sci. Technol. 30, 3284–3293. [CrossRef] [Google Scholar]
- Rytwo G., Nir S., Margulies L. (1996) A Model for Adsorption of Divalent Organic Cations to Montmorillonite, J. Colloid Interface Sci. 189, 551–560. [CrossRef] [Google Scholar]
- Mishael Y.G., Rytwo G., Nir S., Grespin M., Annabi-Bergaya F., van Damme H. (1999) Interactions oh monovalent organic cations with pillared clays, J. Colloid Interface Sci. 209, 123–128. [CrossRef] [PubMed] [Google Scholar]
- Bilgiç C. (2005) Investigation of the factors affecting organic cation adsorption on some silicate minerals, J. Colloid Interface Sci. 281, 33–38. [CrossRef] [PubMed] [Google Scholar]
- Rousseau D., Hadi L., Nabzar L. (2008) Injectivity Decline From Produced-Water Reinjection: New Insights on In-Depth Particle-Deposition Mechanisms, SPEPO 23, (4), 525–531. [CrossRef] [Google Scholar]
- Lin S.H., Juang R.S., Wang Y.H. (2004) Adsorption of acid dye from water onto pristine and acid-actived clays in fixed beds, J. Hazardous Materials B 113, 195–200. [CrossRef] [Google Scholar]
- Kaouna F., Gaid A., Ait Amar H. (1987) Cinétique d’adsorption du bleu méthylène sur différents types d’argiles kaolinitiques, Bull. Soc. Chim. Fr 4, 581–587. [Google Scholar]
- Kar H.S., Mundhara G.L., Sharma G.L., Tiwari J.S. (1991) Sorption-desorption studies of cationic dyes on silica gel pretreated with alkalis in relation to chromatography, Colloids Surf. 55, 23–40. [CrossRef] [Google Scholar]
- Tsai W.T., Chang Y.M., Lai C.W., Lo C.C. (2005) Adsorption of basic dyes in aqueous solution by clay adsorbent from regenerated bleaching earth, Applied Clay Science 29, 149–154. [CrossRef] [Google Scholar]
- Alloway B.J. (1995) Heavy metals in soils, Alloway B.J. (ed.), (Dir), London Blackie Academic and Professional. [Google Scholar]
Issue |
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 69, Number 3, May-June 2014
IFP Energies nouvelles International Conference: Colloids 2012 – Colloids and Complex Fluids: Challenges and Opportunities
|
|
---|---|---|
Page(s) | 405 - 413 | |
DOI | https://doi.org/10.2516/ogst/2013169 | |
Published online | 27 November 2013 |
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.