Dossier: Advances in Signal Processing and Image Analysis for Physico-Chemical, Analytical Chemistry and Chemical Sensing
Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 69, Number 2, March-April 2014
Dossier: Advances in Signal Processing and Image Analysis for Physico-Chemical, Analytical Chemistry and Chemical Sensing
Page(s) 207 - 228
Published online 03 January 2014
  • Eriksson L., Johansson E., Kettaneh-Wold N., Trygg J., Wikstriim C., Wold S. (2006) Multi- and Megavariate Data Analysis Part I: Basic Principles and Applications, Second revised and enlarged edition Vol. 1, 2nd ed, Umetrics, Umea. [Google Scholar]
  • Eriksson L., Johansson E., Kettaneh-Wold N., Trygg J., Wikström C., Wold S. (2006) Multi- and Megavariate Data Analysis Part II: Advanced Applications and Method Extensions, Second revised and enlarged edition Vol. 2, 2nd ed, Umetrics, Umea. [Google Scholar]
  • Orfanidis S.J. (accessed 2013) SVD, PCA, KLT, CCA, and All That, in 332:525 Optimum Signal Processing, available at:˜orfanidi/ece525/svd.pdf. [Google Scholar]
  • Bonnier F., Byrne H.J. (2012) Understanding the molecular information contained in principal component analysis of vibrational spectra of biological systems, Analyst 137, 322. [CrossRef] [PubMed] [Google Scholar]
  • Gerbrands J.J. (1981) On the Relationships between Svd, Klt and Pca, Pattern Recognition 14, 1-6, 375. [CrossRef] [MathSciNet] [Google Scholar]
  • Wall M.E., Rechtsteiner A., Rocha L.M. (2003) Singular value decomposition and principal component analysis, in A Practical Approach to Microarray Data Analysis, Berrar D.P., Dubitzky W., Granzow M. (eds), Kluwer, Norwell, MA. [Google Scholar]
  • Elliott M.A., Walter G.A., Swift A., Vandenborne K., Schotland J.C., Leigh J.S. (1999) Spectral quantitation by principal component analysis using complex singular value decomposition, Magnetic Resonance in Medicine 41, 3, 450. [CrossRef] [Google Scholar]
  • Brand M. (2003) Fast online SVD revisions for lightweight recommender systems, in Proceedings of the Third Siam International Conference on Data Mining, San Francisco, CA, 1-3 May. [Google Scholar]
  • Toivonen H. (2012) Some multivariate signal processing operations, in Applied Signal Processing, available at: [Google Scholar]
  • Clark D., Sasic S. (2006) Chemical images: Technical approaches and issues, Cytometry Part A 69A, 8, 815. [CrossRef] [Google Scholar]
  • Sasic S., Clark D.A. (2006) Defining a strategy for chemical imaging of industrial pharmaceutical samples on Raman line-mapping and global illumination instruments, Applied Spectroscopy 60, 5, 494. [CrossRef] [PubMed] [Google Scholar]
  • Sasic S., Clark D.A., Mitchell J.C., Snowden M.J. (2004) A comparison of Raman chemical images produced by univariate and multivariate data processing - a simulation with an example from pharmaceutical practice, Analyst 129, 11, 1001. [CrossRef] [Google Scholar]
  • StatSoft (accessed 2013) Electronic Statistics Textbook: Partial Least Squares (PLS), in, available at: [Google Scholar]
  • Shin K., Hammond J.K., White P.R. (1999) Iterative svd method for noise reduction of low-dimensional, chaotic time series, Mechanical Systems and Signal Processing 13, 1, 115. [CrossRef] [Google Scholar]
  • Uzunbajakava N., Lenferink A., Kraan Y., Volokhina E., Vrensen G., Greve J., Otto C. (2003) Nonresonant confocal Raman imaging of DNA and protein distribution in apoptotic cells, Biophysical Journal 84, 6, 3968. [CrossRef] [PubMed] [Google Scholar]
  • Beattie J.R., Pawlak A.M., McGarvey J.J., Stitt A.W. (2011) Sclera as a Surrogate Marker for Determining AGE-Modifications in Bruch’s Membrane Using a Raman Spectroscopy-Based Index of Aging, Investigative Ophthalmology and Visual Science 52, 3, 1593. [CrossRef] [Google Scholar]
  • Ghita A., Pascut F.C., Mather M., Sottile V., Notingher I. (2012) Cytoplasmic RNA in Undifferentiated Neural Stem Cells: A Potential Label-Free Raman Spectral Marker for Assessing the Undifferentiated Status, Analytical Chemistry 84, 3155. [CrossRef] [PubMed] [Google Scholar]
  • Walton J., Fairley N. (2005) Noise reduction in X-ray photoelectron spectromicroscopy by a singular value decomposition sorting procedure, Journal of Electron Spectroscopy and Related Phenomena 148, 1, 29. [CrossRef] [Google Scholar]
  • Mauldin F.W., Lin D., Hossack J.A. (2011) The Singular Value Filter: A General Filter Design Strategy for PCABased Signal Separation in Medical Ultrasound Imaging, Ieee Transactions on Medical Imaging 30, 11, 1951. [CrossRef] [PubMed] [Google Scholar]
  • Yuan S.Y., Wang S.X. (2011) A local f-x Cadzow method for noise reduction of seismic data obtained in complex formations, Petroleum Science 8, 3, 269. [CrossRef] [Google Scholar]
  • Wack D.S., Badgaiyan R.D. (2011) Complex Singular Value Decomposition Based Noise Reduction of Dynamic PET Images, Current Medical Imaging Reviews 7, 2, 113. [CrossRef] [Google Scholar]
  • Patel V., Shi Y.G., Thompson P.M., Toga A.W. (2011) K-Svd for Hardi Denoising, 2011 8th IEEE International Symposium on Biomedical Imaging: from Nano to Macro, Chicago, 30 March-2 April. [Google Scholar]
  • Jha S.K., Yadava R.D.S. (2011) Denoising by Singular Value Decomposition and Its Application to Electronic Nose Data Processing, IEEE Sensors Journal 11, 1, 35. [CrossRef] [Google Scholar]
  • Liu B.Y., Liao X. (2009) Image Denoising and Magnification via Kernel Fitting and Modified SVD, Fifth International Conference on Information Assurance and Security, IAS ‘09, Xi’An, China, 18-20 Aug.,Vol. 2, Proceedings, pp. 521-524, [Google Scholar]
  • Nazari B., Sarkrni S.M.A., Karimi P. (2009) A Method for Noise Reduction in Speech Signal Based on Singular Value Decomposition and Genetic Algorithm, Eurocon 2009: International IEEE Conference Devoted to the 150 Anniversary of Alexander S. Popov, Vol. 1-4, Proceedings. [Google Scholar]
  • van’t Hoff M., Reuter M., Dryden D.T.F., Oheim M. (2009) Screening by imaging: scaling up single-DNAmolecule analysis with a novel parabolic VA-TIRF reflector and noise-reduction techniques, Physical Chemistry Chemical Physics 11, 35, 7713. [CrossRef] [Google Scholar]
  • Borglund N., Astrand P.G., Csillag S. (2005) Improved background removal method using principal components analysis for spatially resolved electron energy loss spectroscopy, Microscopy and Microanalysis 11, 1, 88. [CrossRef] [Google Scholar]
  • Bassan P., Sachdeva A., Kohler A., Hughes C., Henderson A., Boyle J., Shanks J.H., Brown M., Clarke N.W., Gardner P. (2012) FTIR microscopy of biological cells and tissue: data analysis using resonant Mie scattering (RMieS) EMSC algorithm, Analyst 137, 6, 1370. [CrossRef] [PubMed] [Google Scholar]
  • Bakshi B. (1998) Multiscale PCA with application to MSPC monitoring, AIChE J 44, 1596. [CrossRef] [Google Scholar]
  • Aminghafari M., Cheze N., Poggi J.M. (2006) Multivariate denoising using wavelets and principal component analysis, Computational Statistics and Data Analysis 50, 9, 2381. [Google Scholar]
  • Chaux C., Duval L., Benazza-Benyahia A., Pesquet J.-C. (2008) A nonlinear Stein-based estimator for multichannel image denoising, IEEE Transactions on Signal Processing 56, 8, 3855. [CrossRef] [MathSciNet] [Google Scholar]
  • Martens H., Stark E. (1991) Extended Multiplicative Signal Correction and Spectral Interference Subtraction - New Preprocessing Methods for near - Infrared Spectroscopy, Journal of Pharmaceutical and Biomedical Analysis 9, 8, 625. [CrossRef] [PubMed] [Google Scholar]
  • O’Farrell M., Wold J.P., Hoy M., Tschudi J., Schulerud H. (2010) On-line fat content classification of in homogeneous pork trimmings using multispectral near infrared interactance imaging, Journal of Near Infrared Spectroscopy 18, 2, 135. [CrossRef] [Google Scholar]
  • De Gelder J., De Gussem K., Vandenabeele P., De Vos P., Moens L. (2007) Methods for extracting biochemical information from bacterial Raman spectra: An explorative study on Cupriavidus metallidurans, Analytica Chimica Acta 585, 2, 234. [CrossRef] [PubMed] [Google Scholar]
  • Bassan P., Kohler A., Martens H., Lee J., Jackson E., Lockyer N., Dumas P., Brown M., Clarke N., Gardner P. (2010) RMieS-EMSC correction for infrared spectra of biological cells: Extension using full Mie theory and GPU computing, Journal of Biophotonics 3, 8-9, 609. [CrossRef] [PubMed] [Google Scholar]
  • Bassan P., Byrne H.J., Bonnier F., Lee J., Dumas P., Gardner P. (2009) Resonant Mie scattering in infrared spectroscopy of biological materials - understanding the ‘dispersion artefact’, Analyst 134, 8, 1586. [CrossRef] [PubMed] [Google Scholar]
  • Bassan P., Kohler A., Martens H., Lee J., Byrne H.J., Dumas P., Gazi E., Brown M., Clarke N., Gardner P. (2010) Resonant Mie Scattering (RMieS) correction of infrared spectra from highly scattering biological samples, Analyst 135, 2, 268. [CrossRef] [PubMed] [Google Scholar]
  • Afseth N.K., Segtnan V.H., Wold J.P. (2006) Raman spectra of biological samples: A study of preprocessing methods, Applied Spectroscopy 60, 12, 1358. [CrossRef] [PubMed] [Google Scholar]
  • Beattie J.R., McGarvey J.J. (2013) Estimation of signal backgrounds on multivariate loadings improves model generation in face of complex variation in backgrounds and constituents, Journal of Raman Spectroscopy 43, 2, 329-338. [CrossRef] [Google Scholar]
  • Balcerowska G., Siuda R. (1999) Inelastic background subtraction from a set of angle-dependent XPS spectra using PCA and polynomial approximation, Vacuum 54, 1-4, 195. [CrossRef] [Google Scholar]
  • Marbach R., Tenhunen M., Niemel P. (2008) Simple and powerful new method for “subtracting” fluorescence backgrounds in Raman spectra, ICORS, 1113, London, UK, 17-22 Aug. [Google Scholar]
  • Beattie J.R., Pawlak A.M., Boulton M.E., Zhang J., Monnier V.M., McGarvey J.J., Stitt A.W. (2010) Multiplex analysis of age-related protein and lipid modifications in human Bruch’s membrane, FASEB Journal 24, 12, 4816-4824. [CrossRef] [Google Scholar]
  • Glenn J.V., Beattie J.R., Barrett L., Frizzell N., Thorpe S.R., Boulton M.E., McGarvey J.J., Stitt A.W. (2007) Confocal Raman microscopy can quantify advanced glycation end product (AGE) modifications in Bruch’s membrane leading to accurate, nondestructive prediction of ocular aging, FASEB Journal 21, 13, 3542-3552. [CrossRef] [Google Scholar]
  • Beattie J.R. (2011) Optimising reproducibility in low quality signals without smoothing; an alternative paradigm for signal processing, Journal of Raman Spectroscopy 42, 1419. [CrossRef] [Google Scholar]
  • Palackÿ J., Mojzes P., Bok J. (2011) SVD-based method for intensity normalization, background correction and solvent subtraction in Raman spectroscopy exploiting the properties of water stretching vibrations, Journal of Raman Spectroscopy 42, 7, 1528-1539. [CrossRef] [Google Scholar]
  • Beattie J.R., Finnegan S., Hamilton R.W., Ali M., Inglehearn C.F., Stitt A.W., McGarvey J.J., Hocking P. M., Curry W.J. (2012) Profiling Retinal Biochemistry in the MPDZ Mutant Retinal Dysplasia and Degeneration Chick: A Model of Human RP and LCA, Investigative Ophthalmology and Visual Science 53, 1, 413. [CrossRef] [Google Scholar]
  • Wold S., Antti H., Lindgren F., Ohman J (1998) Orthogonal signal correction of near-infrared spectra, Chemometrics and Intelligent Laboratory Systems 44, 1-2, 175. [CrossRef] [Google Scholar]
  • Fearn T. (2000) On orthogonal signal correction, Chemometrics and Intelligent Laboratory Systems 50, 1, 47. [CrossRef] [Google Scholar]
  • Trygg J., Wold S. (2003) 02-PLS, a two block (X-Y) latent variable regression (LVR) method with an integral OSC filter, J. Chemometrics 17, 53. [CrossRef] [Google Scholar]
  • Westerhuis J.A., de Jong S., Smilde A.K. (2001) Direct orthogonal signal correction, Chemometrics and Intelligent Laboratory Systems 56, 1, 13. [CrossRef] [Google Scholar]
  • Eriksson L., Trygg J., Johansson E., Bro R., Wold S. (2000) Orthogonal signal correction, wavelet analysis, and multivariate calibration of complicated process fluorescence data, Analytica Chimica Acta 420, 2, 181. [CrossRef] [Google Scholar]
  • Igne B., Roger J.-M., Roussel S., Bellon-Maurel V., Hurburgh C.R. (2009) Improving the Transfer of Near Infrared Prediction Models by Orthogonal Methods, Chemometrics and Intelligent Laboratory Systems 99, 1, 57. [CrossRef] [Google Scholar]
  • Zhang X., Yuan H.F., Guo Z., Song C.F., Li X.Y., Xie J.C. (2011) Study of the Over-Fitting in Building PLS Model Using Orthogonal Signal Correction, Spectroscopy and Spectral Analysis 31, 6, 1688. [Google Scholar]
  • Wu Q.F., Guo L.L., Yu S.G., Zhang Q., Lu S.F., Zeng F., Yin H.Y., Tang Y., Yan X.Z. (2011) A (1)H NMR-based metabonomic study on the SAMP8 and SAMR1 mice and the effect of electro-acupuncture, Experimental Gerontology 46, 10, 787. [CrossRef] [PubMed] [Google Scholar]
  • Lin P., Chen Y.M., He Y. (2012) Identification of Geographical Origin of Olive Oil Using Visible and Near-Infrared Spectroscopy Technique Combined with Chemometrics, Food and Bioprocess Technology 5, 1, 235. [CrossRef] [Google Scholar]
  • Zhu W.C., Cheng F. (2012) Analysis of Transgenic and Non-Transgenic Rice Leaves Using Visible/Near-Infrared Spectroscopy, Spectroscopy and Spectral Analysis 32, 2, 370. [Google Scholar]
  • Versari A., Parpinello G.P., Laghi L. (2012) Application of Infrared Spectroscopy for the Prediction of Color Components of Red Wines, Spectroscopy 27, 2, 36. [Google Scholar]
  • Khajehsharifi H., Pourbasheer E. (2011) Simultaneous Spectrophotometric Determination of Xanthine, Hypoxanthine and Uric Acid in Real Matrix by Orthogonal Signal Correction-Partial Least Squares, Journal of the Iranian Chemical Society 8, 4, 1113. [CrossRef] [Google Scholar]
  • Andersson P.M., Sjostrom M., Lundstedt T. (1998) Preprocessing peptide sequences for multivariate sequence- property analysis, Chemometrics and Intelligent Laboratory Systems 42, 1-2, 41. [CrossRef] [Google Scholar]
  • Imbert L., Ramos R.G., Libong D., Abreu S., Loiseau P. M., Chaminade P. (2012) Identification of phospholipid species affected by miltefosine action in Leishmania donovani cultures using LC-ELSD, LC-ESI/MS, and multivariate data analysis, Analytical and Bioanalytical Chemistry 402, 3, 1169. [CrossRef] [PubMed] [Google Scholar]
  • Panneton B., Roger J.-M., Guillaume S., Longchamps L. (2008) Effects of Preprocessing of Ultraviolet-Induced Fluorescence Spectra in Plant Fingerprinting Applications, Applied Spectroscopy 62, 7, 747. [CrossRef] [PubMed] [Google Scholar]
  • Beattie J.R., Glenn J.V., Boulton M.E., Stitt A.W., McGarvey J.J. (2009) Effect of signal intensity normalization on the multivariate analysis of spectral data in complex ‘real-world’ datasets, Journal of Raman Spectroscopy 40, 429. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.