Dossier: Second and Third Generation Biofuels: Towards Sustainability and Competitiveness
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 68, Number 5, September-October 2013
Dossier: Second and Third Generation Biofuels: Towards Sustainability and Competitiveness
Page(s) 801 - 814
DOI https://doi.org/10.2516/ogst/2013108
Published online 06 June 2013
  • Bridgwater A.V. (2009) Fast Pyrolysis of Biomass, in Thermal Biomass Conversion, Bridgwater A.V., Hofbauer H., Van Loo S. (eds), Thermal Net, CPL Press, UK. [Google Scholar]
  • Bridgwater A.V. (2011) Review of fast Pyrolysis of Biomass and Product Upgrading, Biomass Bioenergy 38, 1-27. [CrossRef] [Google Scholar]
  • Lédé J. (2012) Cellulose Pyrolysis Kinetics: An Historical Review on the Existence and Role of Intermediate Active Cellulose, J. Anal. Appl. Pyrolysis 94, 17-32. [CrossRef] [Google Scholar]
  • Gruner M.L. (1875) Traité de Métallurgie, Dunod, Paris. [Google Scholar]
  • Balat M., Balat M., Kirtay E., Balat H. (2009) Main routes for the thermoconversion of biomass into fuels and chemicals. Part 1: Pyrolysis systems, Energy Convers. Manage. 50, 3147-3157. [CrossRef] [Google Scholar]
  • Mohan D., Pittmann C.V., Steele P.H. (2006) Pyrolysis of wood/biomass for bio oils: a critical review, Energy Fuels 20, 848-889. [CrossRef] [Google Scholar]
  • Pollex A., Ortwein A., Kaltschmitt M. (2012) Thermochemical conversion of solid biofuels. Conversion technologies and their classification, Biomass Conv. Bioref. 2, 21-39. [CrossRef] [Google Scholar]
  • Lédé J., Authier O. (2011) Characterization of biomass fast pyrolysis. Advantages and drawbacks of different possible criteria, Biomass Conv. Bioref. 1, 133-147. [CrossRef] [Google Scholar]
  • Bradbury A.G.W., Sakai Y., Shafizadeh F. (1979) A kinetic model for pyrolysis of cellulose, J. Appl. Polym. Sci. 23, 3271-3280. [CrossRef] [Google Scholar]
  • Auber M. (2009) Effet catalytique de certains inorganiques sur la sélectivité des réactions de pyrolyse rapide de biomasses et de leurs constituants, Thèse, INPL, Nancy, France. [Google Scholar]
  • Boutin O., Ferrer M., Lédé J. (2002) Flash pyrolysis of cellulose pellets submitted to a concentrated radiation: experiments and modeling, Chem. Eng. Sci. 57, 15-25. [CrossRef] [Google Scholar]
  • Lédé J., Blanchard F., Boutin O. (2002) Radient flash pyrolysis of cellulose pellets: products and mechanisms involved in transient and steady state conditions, Fuel 81, 1269-1279. [CrossRef] [Google Scholar]
  • Kohler S. (2009) Pyrolyse rapide de biomasses et de leurs constituants. Application à l’établissement de lois prévisionnelles, Thèse, INPL Nancy, France. [Google Scholar]
  • Olcese R.N., Bettahar M., Petitjean D., Malaman B., Giovannella F., Dufour A. (2012) Appl. Catal. B: Env. 115-116, 63-73. [CrossRef] [Google Scholar]
  • Lédé J., Diebold J.P., Peacocke G.V.C., Piskorz J. (1999) The nature and properties of intermediate and unvaporized biomass pyrolysis materials, in Fast pyrolysis of biomass: a handbook, Bridgwater A.V., et al. (eds), CPL Press, New- burry, UK. [Google Scholar]
  • Thurner F., Mann U. (1981) Kinetic investigation of wood pyrolysis, Ind. Eng. Chem. Des. Dev. 20, 482. [CrossRef] [Google Scholar]
  • Di Blasi C. (2008) Modelling chemical and physical processes of wood and biomass pyrolysis, Prog. Energy Combust. Sci. 34, 47-90. [CrossRef] [Google Scholar]
  • El Haddad M., Rendek E., Corriou J.P., Mauviel G. (2010) Biomass fast pyrolysis: experimental analysis and modeling approach, Energy Fuels 24, 4689-4692. [CrossRef] [Google Scholar]
  • Lédé J., Panagopoulos J., Li H.Z., Villermaux J. (1985) Fast pyrolysis of wood: direct measurement and study of ablation rate, Fuel 64, 1514-1520. [CrossRef] [Google Scholar]
  • Lédé J., Li H.Z., Villermaux J., Martin H. (1987) Fusion- like behaviour of wood pyrolysis, J. Anal. Appl. Pyrolysis 10, 291-308. [CrossRef] [Google Scholar]
  • Jendoubi N., Broust F., Commandré J.M., Mauviel G., Sardin M., Lédé J. (2011) Inorganic distribution in bio oils and char produced by biomass fast pyrolysis: the key role of aerosols, J. Anal. Appl. Pyrolysis 92, 59-67. [CrossRef] [Google Scholar]
  • Authier O., Ferrer M., Mauviel G., Khalfi A.E., Lédé J. (2009) Wood fast pyrolysis: comparison of Lagrangian and Eulerian modeling approaches with experimental measurements, Ind. Eng. Chem. Res. 48, 4796-4809. [CrossRef] [Google Scholar]
  • Liu Q., Wang S.-R., Wang K.-G., Guo X.-J., Luo Z.-Y., Cen K.-F. (2008) Mechanism of formation and consequent evolution of active cellulose during cellulose pyrolysis, Acta Phys. Chim. Sin. 24, 11, 1957-1963. [CrossRef] [Google Scholar]
  • Lédé J. (2010) Biomass pyrolysis: comments on some sources of confusions in the definitions of temperatures and heating rates, Energies 3, 4, 886-898. [CrossRef] [Google Scholar]
  • Gronli M., Antal M.J., Varhegyi G. (1999) Round-Robin study of cellulose pyrolysis kinetics by thermogravimetry, Ind. Eng. Chem. Res. 38, 2238-2244. [CrossRef] [Google Scholar]
  • Mok W.S.L., Antal M.J. (1983) Effects of pressure on biomass pyrolysis. H. Heats of reaction of cellulose pyrolysis, Thermochim. Acta 68, 165-186. [CrossRef] [Google Scholar]
  • Klason P. (1914) Versuch einer Theorie der trockendistillation von Holz, J. Prakt Chem. 90, 2, 413-447. [CrossRef] [Google Scholar]
  • Hoekstra E., Westerhof R.J.M., Brilman W., Van Swaaij W.P.M., Kersten S.R.A., Hogendoorn K.J.A., Windt M. (2011) Heterogeneous and homogeneous reactions of pyrolysis vapors from pine wood, AIChE J. 58, 9, 2830-2842. Doi: 10.1002/aic.12799. [CrossRef] [Google Scholar]
  • Baumlin S., Broust F., Ferrer M., Meunier N., Marty E., Lédé J. (2005) The continuous self stirred tank reactor: measurement of the cracking kinetics of biomass pyrolysis vapours, Chem. Eng. Sci. 60, 41-55. [CrossRef] [Google Scholar]
  • Khelfa A. (2009) Étude des étapes primaires de la dégradation thermique de la biomasse lignocellulosique, Thèse, Université Paul Verlaine, Metz, France. [Google Scholar]
  • Hajaligol M.R., Howard J.B., Longwell J.P., Peters W.A. (1982) Product composition and kinetics for rapid pyrolysis of cellulose, Ind. Eng. Chem. Process Des. Dev. 21, 457-465. [CrossRef] [Google Scholar]
  • Narayan R., Antal M.J. (1996) Thermal lag, fusion and the compensation effect during biomass pyrolysis, Ind. Eng. Chem. Res. 35, 1711-1721. [CrossRef] [Google Scholar]
  • Robson A. (2001) Pyne Newsletter No. 11, pp.1-2. Aston University, UK. [Google Scholar]
  • Venderbosch R.H., Prins W. (2010) Fast pyrolysis technology development, Biofuels Bioprod. Bioref. 4, 178-208. [CrossRef] [Google Scholar]
  • Boutin O., Lédé J., Li H.Z., Kiener P. (1997) Temperature of ablative pyrolysis of wood. Comparison of spinning disc and rotating cylinder experiments, in Biomass gasification and pyrolysis. State of the art and future prospects, Kaltschmitt M.K., Bridgwater A.V. (eds.), Pyne CPL Press, UK, pp. 336-344. [Google Scholar]
  • Bridgwater, A.V., Peacocke, G.V.C. (2004) Ablative thermolysis reactor, US Patent Number US7, 625, 532. [Google Scholar]
  • Meier D., Klaubert H., Scholl S. (2008) Method and device for the pyrolysis of biomass, US patent 7, 438, 785. [Google Scholar]
  • Diebold J.P., Scahill J. (1987) Production of primary pyrolysis oils in a vortex reactor, in Pyrolysis oils from biomass, Soltes J., Milne T.A. (eds), ACS Symposium Series No. 376, 31-40. [Google Scholar]
  • Lédé J. (2000) The cyclone: a multifunctional reactor for the fast pyrolysis of biomass, Ind. Eng. Chem. Res. 39, 4, 893-903. [CrossRef] [Google Scholar]
  • Ndiaye F.T. (2008) Pyrolyse de la biomasse en réacteur cyclone. Recherche des conditions optimales de fonctionnement, Thèse, INPL Nancy, France. [Google Scholar]
  • Bramer E.A., Brem G. (2003) New technology for fast pyrolysis of biomass. Development of the PyRos reactor, in Pyrolysis and gasification of biomass and waste, Bridgwater A.V. (ed.), CPL Press, UK, pp. 63-73. [Google Scholar]
  • Brown J.N., Brown R.C. (2012) Process optimization of an auger pyrolyser with heat carrier using response surface methodology, Bioresource Technology 103, 405-414. [CrossRef] [PubMed] [Google Scholar]
  • Piskorz J., Majerski P., Radlein D., Vladars-Usas A., Scott D.S. (2000) Flash pyrolysis of cellulose for production of anhydro-oligomers, J. Anal. Appl. Pyrolysis 56, 145-166. [CrossRef] [Google Scholar]
  • Couhert C. (2007) Pyrolyse flash à haute température de la biomasse lignocellulosique et de ses composés. Production de gaz de synthèse, Thèse, École des Mines de Paris, Paris- Tech, France. [Google Scholar]
  • Diebold J.P. (1994) A unified, global model for the pyrolysis of cellulose, Biomass Bioenergy 7, 1-6, 75-85. [CrossRef] [Google Scholar]
  • Yang J., Blanchette D., De Caumia B., Roy C. (2001) Modelling, scale-up and demonstration of a vacuum pyrolysis reactor, in Progress in thermochemical biomass conversion, Bridgwater A.V. (ed), Blackwell Science Ltd, Oxford UK, pp. 1296-1311. [Google Scholar]
  • Bulushev D.A., Ross J.R.H. (2011) Catalysis for conversion of biomass to fuels via pyrolysis and gasification: a review, Catal. Today 171, 1-13. [CrossRef] [Google Scholar]
  • Lédé J., Broust F., Ndiaye F.T., Ferrer M. (2007) Properties of bio-oils produced by biomass fast pyrolysis in a cyclone reactor, Fuel 86, 12-13, 1800-1810. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.