Dossier: Second and Third Generation Biofuels: Towards Sustainability and Competitiveness
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 68, Number 4, July-August 2013
Dossier: Second and Third Generation Biofuels: Towards Sustainability and Competitiveness
Page(s) 663 - 680
DOI https://doi.org/10.2516/ogst/2012093
Published online 06 June 2013
  • Amartey S., Jeffries T. (1996) An improvement in Pichia stipitis fermentation of acid-hydrolysed hemicellulose achieved by overliming (calcium hydroxide treatment) and strain adaptation, World J. Microbiol. Biotechnol. 12, 281-283. [CrossRef] [PubMed] [Google Scholar]
  • Amidon T.E., Liu S. (2009) Water-based woody biorefinery, Biotechnology 27, 542-550. [Google Scholar]
  • Ballerini D., Desmarquest J.P., Pourquié J., Nativel F., Rebeller M. (1994) Ethanol production from Lignocellulosics - large- scale experimentation and economics, Bioresour. Technol. 50, 17-23. [CrossRef] [Google Scholar]
  • Bruinenberg P.M., Debot P.H.M., Vandijken J.P., Scheffers W.A. (1984) NADH-linked aldose reductase - the key to anaerobic alcoholic fermentation of xylose by yeasts, Appl. Microbiol. Biotechnol. 19, 256-260. [CrossRef] [Google Scholar]
  • Collas F., Kuit W., Clément B., Marchal R., Lopez-Contreras A., Monot F. (2012) Simultaneous production of isopropanol, butanol, ethanol and 2,3-butanediol by Clostridium acetobutylicum ATCC 824 engineered strains, AMB Express 2, 45. [CrossRef] [PubMed] [Google Scholar]
  • Cu Y., Li J., Zhang L., Chen J., Niu L.X., Yang Y.L., Yang S. (2009) Improvement of xylose utilization in Clostridium acetobutylicum via expression of the talA gene encoding transaldolase from Escherichia coli, J. Biotechnol. 143, 284-287. [CrossRef] [PubMed] [Google Scholar]
  • Durand H., Tiraby G., Pourquié J. (1984) Amélioration génétique de Trichoderma reesei en vue d’une production industrielle de celulases. Génétique des microorganismes industriels, 9ème colloque de la Société Française de Microbiologie, Société Française de Microbiologie, Paris, 15-16 March, pp. 39-50. [Google Scholar]
  • Dürre P. (2007) Biobutanol: An attractive biofuel, Biotechnol. J. 2, 12, 1525-1534. [CrossRef] [PubMed] [Google Scholar]
  • Dürre P. (2008) Fermentative butanol production - Bulk chemical and biofuel, Ann. N.Y. Acad. Sei. 1125, 353-362. [CrossRef] [Google Scholar]
  • Fein J.E., Tallim S.R., Lawford G.R. (1984) Evaluation of Dxylose fermenting yeasts for utilization of a wood-derived hemicellulose hydrolysate, Can. J. Microbiol. 30, 682-690. [CrossRef] [Google Scholar]
  • Gheshlaghi R., Scharer J.M., Moo-Young M., Chou C.P. (2009) Metabolic pathways of Clostridia for producing butanol, Biotechnol. Adv. 27, 764-781. [CrossRef] [PubMed] [Google Scholar]
  • Girbal L., Soucaille P. (1998) Regulation of solvent production in Clostridium acetobutylicum, Trends Biotechnol. 16, 11-16. [CrossRef] [Google Scholar]
  • Hahn-Hügerdal B., Karhumaa K., Jeppsson M., GorwaGrauslund M.-F. (2007) Metabolic engineering for pentose utilization in Saccharomyces cerevisiae, Biofuels 108, 147-177. [CrossRef] [Google Scholar]
  • Hamelinck C.N., van Hooijdonk G., Faaij A.P.C. (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term, Biomass Bioenergy 28, 384-410. [CrossRef] [Google Scholar]
  • Heipieper H.J., Weber F.J., Sikkema J., Keweloh H., Debont J.A.M. (1994) Mechanisms of resistance of whole cells to toxic organic-solvents, Trends Biotechnol. 12, 409-415. [CrossRef] [Google Scholar]
  • Henderson P.J.F. (1990) Proton-linked sugar-transport systems in bacteria, J. Bioenerg. Biomembr. 22, 525-569. [CrossRef] [PubMed] [Google Scholar]
  • Herrero A.A., Gomez R.F., Snedecor B., Tolman C.J., Roberts M.F. (1985) Growth inhibition of Clostridium thermocellum by carboxylic acids: a mechanism based on uncoupling by weak acids, Appl. Microbiol. Biotechnol. 22, 53-62. [CrossRef] [Google Scholar]
  • Jin Y.-S., Alper H., Yang Y.-T., Stephanopoulos G. (2005) Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach, Appl. Environ. Microbiol. 71, 8249-8256. [CrossRef] [PubMed] [Google Scholar]
  • Johansson B., Hahn-Hgerdal B. (2002) The non-oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in Saccharomyces cerevisiae TMB3001, FEMS Yeast Res. 2, 277-282. [PubMed] [Google Scholar]
  • Jojima T., Omumasaba C.A., Inui M., Yukawa H. (2010) Sugar transporters in efficient utilization of mixed sugar substrates: current knowledge and outlook, App!. Microbiol. Biotechnol. 85, 471-480. [CrossRef] [Google Scholar]
  • Jones D.T., Woods D.R. (1986) Acetone-butanol fermentation revisited, Microbiol. Rev. 50, 484-524. [PubMed] [Google Scholar]
  • Jonsson L.J., Palmqvist E., Nilvebrant N.O., Hahn-Hfigerdal B. (1998) Detoxification of wood hydrolysates with laccase and peroxidase from the white-rot fungus Trametes versicolor, Appl. Microbiol. Biotechnol. 49, 691-697. [CrossRef] [Google Scholar]
  • Karhumaa K., Hahn-Hfigerdal B., Gorwa-Grauslund M.-F. (2005) Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering, Yeast 22, 359-368. [Google Scholar]
  • Karhumaa K., Sanchez R., Hahn-Hfigerdal B., GorwaGrauslund M.-F. (2007) Comparison of the xylose reductasexylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae, Microb. Cell Fact. 6, 5. [CrossRef] [PubMed] [Google Scholar]
  • Keis S., Sullivan J.T., Jones D.T. (2001) Physical and genetic map of the Clostridium saccharobutylicum (formerly Clostridium acetobutylicum) NCP 262 chromosome, Microbiol. (SGM) 147, 1909-1922. [Google Scholar]
  • Kell, D.B., Peck, M.W., Rodger, G., Morris, J.G. (1981) On the permeability to weak acids and bases of the cytoplasmic membrane of Clostridium pasteurianum, Biochem. Biophys. Res. Commun. 99, 81-88. [CrossRef] [PubMed] [Google Scholar]
  • Kuyper, M., Toirkens, M.J., Diderich, J.A., Winkler, A.A., van Dijken, J.P., Pronk, R. (2003) High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae, FEMS Yeast Res. 4, 69-78. [CrossRef] [PubMed] [Google Scholar]
  • Kuyper M., Toirkens M.J., Diderich J.A., Winkler A.A., van Dijken J.P., Pronk J.T. (2005) Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain, FEMS Yeast Res. 5, 925-934. [CrossRef] [PubMed] [Google Scholar]
  • Larsson S., Reimann A., Nilvebrant N.O., Jonsson L.J. (1999) Comparison of different methods for the detoxification of lignocellulose hydrolyzates of spruce, Appl. Biochem. Biotechnol. 77-9, 91-103. [CrossRef] [Google Scholar]
  • Lee, S.Y., Park, J.H., Jang, S.H., Nielsen, L.K., Kim, J., Jung, K.S. (2008) Fermentative butanol production by Clostridia, Biotechnol. Bioeng. 101, 209-228. [CrossRef] [PubMed] [Google Scholar]
  • Liu Z.Y., Ying Y., Li F.L., Ma C.Q., Xu P. (2010) Butanol production by Clostridium beijerinckii ATCC 55025 from wheat bran, J. Ind. Microbiol. Biotechnol. 37, 495-501. [CrossRef] [PubMed] [Google Scholar]
  • Lopez M.J., Nichols N.N., Dien B.S., Moreno J., Bothast R.J. (2004) Isolation of microorganisms for biological detoxification of lignocellulosic hydrolysates, Appl. Microbiol. Biotechnol. 64, 125-131. [CrossRef] [PubMed] [Google Scholar]
  • Lowry O.H., Rosebrough N.H., Farr A.L., Randall R.J. (1951) Protein measurement with the Folin phenol reagent, J. Biol. Chem. 193, 265-275. [PubMed] [Google Scholar]
  • Ludwig H., Rebhan N., Blencke H.-M., Merzbacher M., Stülke J. (2002) Control of the glycolytic gapA operon by the catabolite control protein A in Bacillus subtilis: a novel mechanism of CcpA-mediated regulation, Molec. Microbiol. 45, 543-553. [CrossRef] [Google Scholar]
  • Madigan M.T., Martinko J.M. (2006) Cell structure/function, in Brock Biology of microorganisms, Carlson G., Challice J. (eds), 11th ed., Pearson Prentice Hall, Upper Saddle River, NJ, pp. 55-100. [Google Scholar]
  • Maloney P.C., Kashket E.R., Wilson T.H. (1974) A protonmotive force drives ATP synthesis in bacteria, Proc. Natl. Acad. Sci. 71, 3896-3900. [CrossRef] [Google Scholar]
  • Marchai R., Ropars M., Pourquié J., Fayolle F., Vandecasteele J.P. (1992) Large-scale enzymatic-hydrolysis of agricultural lignocellulosic biomass. Conversion into Acetone-Butanol, Bioresour. Technol. 42, 205-217. [CrossRef] [Google Scholar]
  • Millati R., Niklasson C., Taherzadeh M.J. (2002) Effect of pH, time and temperature of overliming on detoxification of dilute- acid hydrolyzates for fermentation by Saccharomyces cerevisiae, Proc. Biochem. 38, 515-522. [CrossRef] [Google Scholar]
  • Mitchell W.J., Shaw J.E., Andrews L. (1991) Properties of the glucose phosphotransferase system of Clostridium acetobutylicum NCIB 8052, Appl. Environ. Microbiol. 57, 2534-2539. [PubMed] [Google Scholar]
  • Mohagheghi A., Ruth M., Schell D.J. (2006) Conditioning hemicellulose hydrolysates for fermentation: Effects of over- liming pH on sugar and ethanol yields, Process Biochem. 41, 1806-1811. [CrossRef] [Google Scholar]
  • Mutschlechner O., Swoboda H., Gapes J.R. (2000) Continuous two-stage ABE-fermentation using Clostridium beijerinckii NRRL B592 operating with a growth rate in the first stage vessel close to its maximal value, Journal of Molecular Microbiology and Biotechnology 2, 101-105. [PubMed] [Google Scholar]
  • Nichols N.N., Sharma L.N., Mowery R.A., Chambliss C.K., van Walsum G.P., Die B.S., Iten L.B. (2008) Fungal metabolism of fermentation inhibitors present in corn stover dilute acid hydrolysate, Enzyme Microb. Technol. 42, 624-630. [CrossRef] [Google Scholar]
  • Nilvebrant N.O., Reimann A., Larsson S., Jonsson L.J. (2001) Detoxification of lignocellulose hydrolysates with ion- exchange resins, Appl. Biochem. Biotechnol. 91-3, 35-49. [CrossRef] [Google Scholar]
  • Okuda N., Soneura M., Ninomiya K., Katakura Y., Shioya S. (2008) Biological detoxification of waste house wood hydrolysate using Ureibacillus thermosphaericus for bioethanol production, J. Biosci. Bioeng. 106, 128-133. [CrossRef] [PubMed] [Google Scholar]
  • Ounine K., Petitdemange H., Raval G., Gay R. (1985) Regulation and butanol inhibition of D-xylose and D-glucose uptake in Clostridium acetobutylicum, Appl. Environ. Microbiol. 49, 874-878. [PubMed] [Google Scholar]
  • Palmqvist E., Hahn-Hfigerdal B. (2000) Fermentation of lignocellulosic hydrolysates: inhibitors and mechanisms of inhibition, Bioresour. Technol. 74, 25-33. [CrossRef] [Google Scholar]
  • Palmqvist E., Hahn-Hfigerdal B., Galbe M., Zacchi G. (1996) The effect of water-soluble inhibitors from steam-pretreated willow on enzymatic hydrolysis and ethanol fermentation, Enzyme Microb. Technol. 19, 470-476. [CrossRef] [Google Scholar]
  • Palmqvist E., Hahn-Hfigerdal B., Szengyel Z., Zacchi G., Reczey K. (1997) Simultaneous detoxification and enzyme production of hemicellulose hydrolysates obtained after steam pretreatment, Enzyme Microb. Technol. 20, 286-293. [CrossRef] [Google Scholar]
  • Papoutsakis E.T. (2008) Engineering solventogenic Clostridia, Curr. Opin. Biotechnol. 19, 420-429. [CrossRef] [PubMed] [Google Scholar]
  • Paredes C.J., Jones S.W., Senger R.S., Borden J.R., Sillers R.T. (2008) Molecular aspects of butanol fermentation, in Bioenergy, ASM Press, Washington, DC, pp. 323-334. [Google Scholar]
  • Pourquié J., Warzywoda M., Chevron F., Longchamp D., Vandecasteele J.P. (1988) Scale-up of cellulase production, in FEMS Symposium No.43: Biochemistry and Genetics of cellulose degradation, Aubert J.-P., Beguin P., Millet J. (eds), Academic Press, London, pp. 71-86. [Google Scholar]
  • Ranjan A., Moholkar V.S. (2012) Biobutanol: science, engineering and economics, Mt. J. Energ. Res. 36, 277-323. [CrossRef] [Google Scholar]
  • Ren C., Gu Y., Hu S., Wu Y., Wang P., Yang Y., Yang C., Yang S., Jiang W. (2010) Identification and inactivation of pleiotropic regulator CcpA to eliminate glucose repression of xylose utilization in Clostridium acetobutylicum, Metabolic Eng. 12, 446-454. [CrossRef] [Google Scholar]
  • Rizzi M., Harwart K., Erlemann P., Bui-Thanh N.-A., Dellweg H. (1989) Purification and properties of the NAD+-xylitoldehydrogenase from the yeast Pichia stipites, J. Ferment. Bioeng. 67, 20-24. [CrossRef] [Google Scholar]
  • Rogers P. (1986) Genetics and biochemistry of Clostridium relevant to development of fermentation processes, Adv. Appl. Microbiol. 31, 1-60. [CrossRef] [Google Scholar]
  • Ropars M., Marchal R., Pourquie J., Vandecasteele J.P. (1992) Large-scale enzymatic-hydrolysis of agricultural lignocellulosic biomass: pretreatment procedures, Bioresour. Technol. 42, 197-204. [CrossRef] [Google Scholar]
  • Sanchez O.J., Cardona C.A. (2008) Trends in biotechnological production of fuel ethanol from different feedstocks, Bioresour. Technol. 99, 5270-5295. [CrossRef] [PubMed] [Google Scholar]
  • Schneider H. (1996) Selective removal of acetic acid from hardwood-spent sulfite liquor using a mutant yeast, Enzyme Microb. Technol. 19, 94-98. [CrossRef] [Google Scholar]
  • Sedlak M., Ho N.W.Y. (2004) Characterization of the effectiveness of hexose transporters for transporting xylose during glucose and xylose co-fermentation by a recombinant Saccharomyces yeast, Yeast 21, 671-684. [CrossRef] [PubMed] [Google Scholar]
  • Singh A., Mishra P. (1995) Microbial Pentose utilization: current applications in biotechnology, Progress in Industrial Microbiology, volume 33, Elsevier, Amsterdam. [Google Scholar]
  • Sonderegger M., Jeppsson M., Hahn-Hdgerdal B., Sauer U. (2004) Molecular basis for anaerobic growth of Saccharomyces cerevisiae on xylose, investigated by global gene expression and metabolic flux analysis, Appl. Environ. Microbiol. 70, 2307-2317. [CrossRef] [PubMed] [Google Scholar]
  • Spivey, M.J. (1978) Acetone-Butanol-Ethanol Fermentation, Process Biochem. 13, 2. [Google Scholar]
  • Stenberg K., Tengborg C., Galbe M., Zacchi G., Palmqvist E., Hahn-Hagerdal B. (1998) Recycling of process streams in ethanol production from softwoods based on enzymatic hydrolysis, Appl. Biochem. Biotechnol. 70-2, 697-708. [CrossRef] [Google Scholar]
  • Sullivan L., Scotcher M.C., Bennett G. (2008) Increased biofuel production by metabolic engineering of Clostidium acetobutylicum, in Bioenergy, Wall J.D., Harwood C.S., Demain A. (eds), ASM Press, Washington, DC, pp. 361-376. [Google Scholar]
  • Talebnia F., Taherzadeh M.J. (2006) In situ detoxification and continuous cultivation of dilute-acid hydrolyzate to ethanol by encapsulated S-cerevisiae, J. Biotechnol. 125, 377-384. [CrossRef] [PubMed] [Google Scholar]
  • Tangney M., Mitchell W. (2007) Characterisation of a glucose phosphotransferase system in Clostridium acetobutylicum ATCC 824, Appl. Microbiol. Biotechnol. 74, 398-405. [CrossRef] [PubMed] [Google Scholar]
  • Thauer R.K., Jungermann K., Decker K. (1977) Energy conservation in chemotrophic anaerobic bacteria, Bacteriol. Rev. 41, 100-180. [PubMed] [Google Scholar]
  • Walfridsson M., Hallborn J., Penttila M., Keranen S., HahnHdgerdal B. (1995) Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKLI and TALI genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase, Appl. Environ. Microbiol. 61, 4184-4190. [PubMed] [Google Scholar]
  • Warzywoda M., Larbre E., Pourquié J. (1992) Production and characterization of cellulolytic enzymes from Trichoderma reesei grown on various carbon sources, Bioresour. Technol. 39, 125-130. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.