Dossier: Second and Third Generation Biofuels: Towards Sustainability and Competitiveness
Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 68, Number 4, July-August 2013
Dossier: Second and Third Generation Biofuels: Towards Sustainability and Competitiveness
Page(s) 693 - 705
Published online 15 August 2013
  • Alkasrawi M., Rudolf A., Lidén G. (2006) Influence of strain and cultivation procedure on the performance of simultaneous saccharification and fermentation of steam pretreated spruce, Enzyme Microb. Technol. 38, 279-287. [CrossRef] [Google Scholar]
  • Andersone A., Arshanitsa A., Dizhbite T., Dobele G., Kampars V., Telysheva G. (2009) Characterization of non- hydrolyzed residues from bioethanol production from softwood and wheat straw, Proceedings of the 15th International Symposium on Wood, Fiber and Pulping Chemistry, Oslo, Norway, 15-18 June [Google Scholar]
  • Arshanitsa A., Barmina I., Telysheva G., Dizhbite T., Andersone A., Zake M., Grant I. (2009) The composition and fuel characteristics of non-hydrolized residues from wheat straw ethanol production, in Proceedings of the 8th Scientific Conference Engineering for Rural Development, Jelgava, Latvia, 28-29 May, pp. 105-111. [Google Scholar]
  • Bailey J.E. (1991) Towards a science of metabolic engineering, Science 252, 1668-1675. [CrossRef] [PubMed] [Google Scholar]
  • Bengtsson O., Hahn-Hdgerdal B., Gorwa-Grauslund M.F. (2009) Xylose reductase from Pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae, Biotechnol. Biofuels 2, 9-1. [CrossRef] [PubMed] [Google Scholar]
  • Berlin A., Gilkes N., Kilburn D., Bura R., Markov A., Skomarovsky A., Okunev O., Gusakov A., Maximenko V., Gregg D. (2005) Evaluation of novel fungal cellulase preparations for ability to hydrolyze softwood substrates — evidence for the role of accessory enzymes, Enzyme Microb. Technol. 37, 175-184. [CrossRef] [Google Scholar]
  • Boles E., Keller M. (2006) Novel specific arabinose transporter from the yeast Pichia stipitis, and uses thereof, Patent application PCT/EP2007/010668. [Google Scholar]
  • Bro C., Knudsen S., Regensberg B., Olsson L., Nielsen J. (2005) Improvement of galactose uptake in Saccharomyces cerevisiae through overexpression of phosphoglucomutase: example of transcript analysis as a tool in inverse metabolic engineering, Appl. Environ. Microbiol. 71, 6465-6472. [CrossRef] [PubMed] [Google Scholar]
  • Fonseca C., Olofsson K., Ferreira C., Runquist D., Fonseca L.L., Hahn-Hdgerdal B., Lidén G. (2011) The glucose/xylose facilitator Gxfl from Candida intermedia expressed in a xylose-fermenting industrial strain of Saccharomyces cereviside increases xylose uptake in SSCF of wheat straw, Enzyme Microb. Technol. 48, 518-525. [CrossRef] [PubMed] [Google Scholar]
  • Galbe M., Sassner P., Wingren A., Zacchi G. (2007) Process Engineering Economics of Bioethanol Production, in Biofuels, Olsson L. (ed), Springer, Berlin/Heidelberg, Vol. 108, pp. 303-327. [Google Scholar]
  • Garcia Sanchez R., Hahn-Hdgerdal B., Gorwa-Grauslund M. F. (2010a) PGM2 overexpression improves anaerobic galactose fermentation in Saccharomyces cerevisiae, Microb. Cell Fact. 9, 40-1. [CrossRef] [PubMed] [Google Scholar]
  • Garcia Sanchez R., Hahn-Hdgerdal B., Gorwa-Grauslund M. F. (2010b) Cross-reactions between engineered xylose and galactose pathways in recombinant Saccharomyces cerevisiae, Biotechnol. Biofuels 3, 19-1. [CrossRef] [PubMed] [Google Scholar]
  • Garcia Sanchez R., Karhumaa K., Fonseca C., Sanchez Nogue V., Almeida J.R.M., Larsson C.U., Bengtsson O., Bettiga M., Hahn-Hdgerdal B., Gorwa-Grauslund M.F. (2010c) Improved xylose and arabinose utilization by an industrial recombinant Saccharamyces cerevisiae strain using evolutionary engineering, Biotechnol. Biofuels 3, 13. [CrossRef] [Google Scholar]
  • Hahn-Hdgerdal B., Karhumaa K., Fonseca C., Spencer-Martins I., Gorwa-Grauslund M.F. (2007) Towards industrial pentose-fermenting yeast strains, Appl. Microbiol. Biotechnol. 74, 937-953. [CrossRef] [PubMed] [Google Scholar]
  • Heer D., Sauer U. (2008) Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain, Microb. Biotechnol. 1, 497-506. [CrossRef] [PubMed] [Google Scholar]
  • Heer D., Heine D., Sauer U. (2009) Resistence of Saccharomyces cerevisiae to high concentrations of furfural is based on NADPH-dependent reduction by at least two oxidoreductases, Appl. Environ. Microb. 75, 7631-7638. [CrossRef] [Google Scholar]
  • Himmel M.E., Ding S.Y., Johnson D.K., Adney W.S., Nimlos M.R., Brady J.W., Foust T.D. (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production, Science 315, 804-807. [CrossRef] [PubMed] [Google Scholar]
  • Karhumaa K., Wiedemann B., Hahn-Hdgerdal B., Boles E., Gorwa-Grauslund M.F. (2006) Co-utilization of L-arabinose and D-xylose by laboratory and industrial Saccharomyces cerevisiae strains, Microb. Cell Fact. 5, 18-1. [CrossRef] [PubMed] [Google Scholar]
  • Koch N., Kensch O., Schulze-Pellengahr K. (2009) Polypeptides having cellobiohydrolase II activity, Patent application PCT WO/2010/066411. [Google Scholar]
  • KStter P., Ciriacy M. (1993) Xylose fermentation by Saccharomyces cerevisiae, Appl. Microbiol. Biotechnol. 38, 776-783. [CrossRef] [Google Scholar]
  • Lau M.W., Gunawan C., Balan V., Dale B.E. (2010) Comparing the fermentation performance of Escherichia coli KO11, Saccharomyces cerevisiae 424A(LNH-ST) and Zymomonas mobilis AX101 for cellulosic ethanol production, Biotechnol. Biofuels 3, 11-1. [CrossRef] [PubMed] [Google Scholar]
  • Leandro M.J., Goncalves P., Spencer-Martins I. (2006) Two glucose/xylose transporter genes from the yeast Candida inter- media: first molecular characterization of a yeast xylose H + symporter, Biochem. J. 395, 543-549. [CrossRef] [PubMed] [Google Scholar]
  • Lee S.Y., Lee D.-Y., Kim T.Y. (2005) Systems biotechnology for strain improvement, Trends Biotechnol. 23, 349-358. [CrossRef] [PubMed] [Google Scholar]
  • Lee W., Kim M.D., Ryu Y.W., Bisson L., Seo J.H. (2002) Kinetic studies on glucose and xylose transport in Saccharomyces cerevisiae, Appl. Microbiol. Biotechnol. 60, 186-191. [CrossRef] [PubMed] [Google Scholar]
  • Margeot A., Hahn-Hdgerdal B., Edlund M., Slade R., Monot F. (2009) New improvements for lignocellulosic ethanol, Curr. Opin. Biotechnol. 20, 372-380. [CrossRef] [PubMed] [Google Scholar]
  • Martinez D. et al. (2008) Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina), Nature Biotechnol. 26, 553-560. [CrossRef] [Google Scholar]
  • Olofsson K., Bertilsson M., Lidén G. (2008a) A short review on SSF — an interesting process option for ethanol production from lignocellulosic feedstocks, Biotechnol. Biofuels 1, 7-1. [CrossRef] [PubMed] [Google Scholar]
  • Olofsson K., Rudolf A., Lidén G. (2008b) Designing simultaneous saccharification and fermentation for improved xylose conversion by a recombinant strain of Saccharomyces cerevisiae, J. Biotechnol. 134, 112-120. [CrossRef] [PubMed] [Google Scholar]
  • Olofsson K., Palmqvist B., Lidén G. (2010a) Improving simultaneous saccharification and co-fermentation of pretreated wheat straw using both enzyme and substrate feeding, Biotechnol. Biofuels 3, 17-1. [PubMed] [Google Scholar]
  • Olofsson K., Wiman M., Lidén G. (2010b) Controlled feeding of cellulases improves conversion of xylose in simultaneous saccharification and co-fermentation for bioethanol production, J. Biotechnol. 145, 168-175. [CrossRef] [PubMed] [Google Scholar]
  • Olsson L., Hahn-Hdgerdal B. (1993) Fermentative performance of bacteria and yeasts in lignocellulose hydrolysates, Process Biochem. 28, 249-257. [CrossRef] [Google Scholar]
  • Ostergaard S., Olsson L., Johnston M., Nielsen J. (2000) Increasing galactose consumption by Saccharomyces cerevisiae through metabolic engineering of the GAL gene regulatory network, Nature Biotechnol. 18, 1283-1286. [CrossRef] [Google Scholar]
  • Reifenberger E., Boles E., Ciriacy M. (1997) Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of glucose repression, Eur. J. Biochem. 245, 324-333. [CrossRef] [PubMed] [Google Scholar]
  • Runquist D., Fonseca C., Râdstr6m P., Spencer-Martins I., Hahn-Hagerdal B. (2009a) Expression of the Gxfl transporter from Candida intermedia improves fermentation performance in recombinant xylose-utilizing Saccharomyces cerevisiae, Appl. Microbiol. Biotechnol. 82, 123-130. [CrossRef] [PubMed] [Google Scholar]
  • Runquist D., Râdstr6m P., Hahn-Hbgerdal B. (2009b) Comparison of heterologous xylose transporters in recombinant Saccharomyces cerevisiae, Biotechnol. Biofuels 3, 5-1. [CrossRef] [Google Scholar]
  • Saloheimo A., Rauta J., Stasyk O.V., Sibirny A.A., Penttila M., Ruohonen L. (2007) Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases, Appl. Microbiol. Biotechnol. 74, 1041-1052. [CrossRef] [PubMed] [Google Scholar]
  • Sauer U. (2001) Evolutionary engineering for industrially important microbial phenotypes, Adv. Biochem. Eng./Biotechnol. 73, 129-169. [CrossRef] [Google Scholar]
  • Slade R., Shah N., Bauen A. (2009a) The commercial performance of cellulosic ethanol supply-chains in Europe, Biotechnol. Biofuels 2, 15-1. [CrossRef] [PubMed] [Google Scholar]
  • Slade R., Shah N., Bauen A. (2009b) The GHG performance of cellulosic ethanol supply-chains in Europe, Biotechnol. Biofuels 2, 3-1. [CrossRef] [PubMed] [Google Scholar]
  • Slade R. (2009c) Prospects for cellulosic ethanol supply-chains in Europe: a techno-economic and environmental assessment, PhD Thesis, Imperial College, London. [Google Scholar]
  • Wahlbom C.F., van Zyl W.H., J6nsson L.J., Hahn-Hagerdal B., Otero R.R. (2003) Generation of the improved recombinant xylose-utilizing Saccharomyces cerevisiae TMB3400 by random mutagenesis and physiological comparison with Pichia stipitis CBS6054, FEMS Yeast Res. 3, 319-326. [CrossRef] [PubMed] [Google Scholar]
  • Wiedemann B., Boles E. (2008) Codon-optimized bacterial genes improve L-arabinose fermentation in recombinant Saccharomyces cerevisiae, Appl. Environ. Microbiol. 74, 2043-2050. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.