Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 68, Number 3, May-June 2013
Dossier: Discovery and Optimization of Catalysts and Solvents for Absorption Using High Throughput Experimentation
Page(s) 595 - 612
Published online 09 August 2013
  • Thiercelin M.J., Dargaud B., Baret J.F., Rodriguez W.J. (1997) Cement design based on cement mechanical response, SPE Annual Technical Conf and Exhibition (ATCE ’97), San Antonio, Texas, 5-8 Oct., pp. 337-347. [Google Scholar]
  • Bosma M., Ravi K., Van Driel W., Jan Schreppers G. (1999) Design approach to sealant selection for the life of the well, 74th SPE Annual Technical Conf. and Exhibition (ATCE ’99), Houston, Texas, 3-6 Oct., pp. 1-14. [Google Scholar]
  • Di Lullo G., Rae P. (2000) Cements for long term isolation — design optimization computer modelling and prediction, 2000 IADCISPE Asia Pacific Drilling Technology, Kuala Lumpur, Malaysia, 11-13 Sept., SPE 62745-MS, pp. 1-14. [Google Scholar]
  • Boukhelifa L., Moroni N., James S.G., Le Roy-Delage S., Thiercelin M.J., Lemaire G. (2004) Evaluation of cement systems for oil and gas well zonal isolation in a full-scale annular geometry, IADC/SPE Drilling Conference, Dallas, Texas, 2-4 March, SPE 87195-MS, pp. 44-53. [Google Scholar]
  • D’Angelo R., Plona T.J., Schwartz L.M., Coveney P. (1995) Ultrasonic measurements on hydrating cement slurries: onset of shear wave propagation, Adv. Cern. Bas. Mat. 2, 1, 8-14. [Google Scholar]
  • Boumiz A., Vernet C., Cohen-Tenoudji F. (1996) Mechanical properties of cement pastes and mortars at early ages, Adv. Cern. Bas. Mat. 3, 3-4, 94-106. [Google Scholar]
  • Lacouture J.C., Johnson P.A., Cohen-Tenoudji F. (2003) Study of critical behavior in concrete during curing by application of dynamic linear and nonlinear means, J. Ac- oust. Soc. Am. 113, 3, 1325-1332. [CrossRef] [Google Scholar]
  • Lootens D., Hébraud P., Lécolier E., Van Damme H. (2004) Gelation, shear-thinning and shear-thickening in cement slurries, Oil Gas Sci. Technol. 59, 1, 31-40. [CrossRef] [EDP Sciences] [Google Scholar]
  • Sun Z., Voigt T., Shah S.P. (2006) Rheometric and ultrasonic investigations of viscoelastic properties of fresh Portland cement pastes, Cern. Concr. Res. 36, 2, 278-287. [CrossRef] [Google Scholar]
  • Trtnik G., Turk G., Kavcic F., Bosiljkov V.B. (2008) Possibilities of using ultrasonic wave transmission method to estimate initial setting time of cement paste, Cern. Concr. Res. 38, 11, 1336-1342. [CrossRef] [Google Scholar]
  • Voigt T., Shah S.P. (2004) Properties of early-age Portland cement mortar monitored with shear wave reflection method, ACI Materials J. 101, 6, 473-482. [Google Scholar]
  • Ye G., van Breugel K., Fraaij A.L.A. (2003) Experimental study and numerical simulation on the formation of microstructure in cementitious materials at early age, Cern. Concr. Res. 33, 2, 233-239. [CrossRef] [Google Scholar]
  • Voigt T., Malonn T., Shah S.P. (2006) Green and early age compressive strength of extruded cement mortar monitored with compression tests and ultrasonic techniques, Cern. Concr. Res. 36, 858-867. [CrossRef] [Google Scholar]
  • Reddy B.R., Santra A., McMechan D., Gray D., Brenneis C., Dunn R. (2007) Cement mechanical property measurements under wellbore conditions, SPE Drill. Complet. 22, 1, 33-38. [Google Scholar]
  • Sanahuja J., Dormieux L., Chanvillard G. (2007) Modelling elasticity of a hydrating cement paste, Cern. Concr. Res. 37, 10, 1427-1439. [CrossRef] [Google Scholar]
  • Torrenti J.M., Benboudjema F. (2005) Mechanical threshold of cementitious materials at early age, Mater. Struct. 38, 277, 299-304. [Google Scholar]
  • Haecker C.-J., Garboczi E.J., Bullard J.W., Bohn R.B., Sun Z., Shah S.P., Voigt T. (2005) Modeling the linear elastic properties of Portland cement paste, Con. Concr. Res. 35, 10, 1948-1960. [Google Scholar]
  • Bishnoi S., Scrivener K.L. (2009) pic: A new platform for modelling the hydration of cements, Cern. Concr. Res. 39, 4, 266-274. [Google Scholar]
  • Garboczi E., Bullard J. (2009) Virtual concrete in real time, Concrete Producer 27, 4, 19-22. [Google Scholar]
  • Bernard O., Ulm F.J., Lemarchand E. (2003) A Multiscale micromechanics-hydration model for the early-age elastic properties of cement-based materials, Cern. Concr. Res. 33, 9, 1293-1309. [CrossRef] [Google Scholar]
  • Ghabezloo S. (2010) Association of macroscopic laboratory testing and micromechanics modelling for the evaluation of the poroelastic parameters of a hardened cement paste, Cent Concr. Res. 40, 8, 1197-1210. [CrossRef] [Google Scholar]
  • Le Q.V., Meftah F., He Q.C., Le-Pape Y. (2008) Creep and relaxation functions of a heterogeneous viscoelastic porous medium using the Mori-Tanaka homogenization scheme and a discrete microscopic retardation spectrum, Mech. Time-Dependent Mater. 11, 3-4, 309-331. [Google Scholar]
  • Nemat-Nasser S., Hori M. (1999) Micromechanics: overall properties of heterogeneous materials, North Holland, Amsterdam. [Google Scholar]
  • Milton G. (2002) The theory of composites, Cambridge University Press, Dordrecht. [Google Scholar]
  • Zaoui A. (1997) Matériaux hétérogènes et composites, Courses of the Ecole Polytechnique, Palaiseau, France. [Google Scholar]
  • Tennis P.D., Jennings H.M. (2000) A model for two types of calcium silicate hydrate in the microstructure of Portland cement pastes, Cern. Concr. Res. 30, 6, 855-863. [Google Scholar]
  • Hervé E., Zaoui A. (1993) n-Layered inclusion-based micromechanical modelling, Int. J. Eng. Sci. 31, 1, 1-10. [CrossRef] [Google Scholar]
  • Kell G.S. (1975) Density, thermal expansivity and compressibility of liquid water from 0° to 150°C: correlations and tables for atmospheric pressure and saturation reviewed and expressed on 1968 temperature scale, J. Chem. Eng. Data 20, 1, 97-105. [CrossRef] [Google Scholar]
  • Monteiro P.J.M., Chang C.T. (1995) The elastic moduli of calcium hydroxide, Cern. Concr. Res. 25, 8, 1605-1609. [CrossRef] [Google Scholar]
  • Acker P. (2001) Micromechanical analysis of creep and shrinkage mechanisms, creep, shrinkage and durability mechanics of concrete and other quasi-brittle materials, Proc. of the 6th International Conference CONCREEP6, Cambridge, MA, USA, 20-22 Aug, Elsevier, Oxford, UK, pp. 15-25. [Google Scholar]
  • Velez K., Maximilien S., Damidot D., Fantozzi G., Sorrentino F. (2001) Determination by nanoindentation of elastic modulus and hardness of pure constituents of Portland cement clinker, Cern. Concr. Res. 31, 4, 555-561. [CrossRef] [Google Scholar]
  • Constantinides G., Ulm F.J. (2004) The effect of two types of C—S—H on the elasticity of cement-based materials: results from nanoindentation and micromechanical modeling, Cern. Concr. Res. 34, 11, 1293-1309. [Google Scholar]
  • Ulm F.J., Coussy O. (1998) Couplings in early-age concrete: from material modeling to structural design, Int. J. Solids Struct. 35, 31-32, 4295-4311. [Google Scholar]
  • Pichler C., Lackner R., Mang H.A. (2006) A multiscale micromechanics model for the autogenous-shrinkage deformation of early-age cement-based materials, Eng. Fract. Mech. 74, 1-2, 34-58. [Google Scholar]
  • Escalante-Garcia J.I., Sharp J.H. (1998) Effect of temperature on the hydration of the main clinker phases in Portland cements: Part I, neat cements, Cern. Concr. Res. 28, 9, 1245-1257. [CrossRef] [Google Scholar]
  • Taylor H.F.W. (1997) Cement chemistry, Academic Press, New York. [Google Scholar]
  • Chougnet A., Audibert A., Moan M. (2007) Linear and non-linear behaviour of cement and silica suspensions. Effect of polymer addition, Rheol. Acta 46, 6, 793-802. [CrossRef] [Google Scholar]
  • Hansen T.C. (1986) Physical structure of hardened cement paste. A classical approach, Mater. Struct. 19, 114, 423-436. [CrossRef] [Google Scholar]
  • Bourissai M. (2010) Comportement thermo-chimio-hydromécanique d’un ciment pétrolier au très jeune âge en conditions de prise HP/HT. Approche expérimentale et analyse par changement d’échelle, PhD Thesis, University of Paris-Est. [Google Scholar]
  • Heikal M., Morsy M.S., Aiad I. (2005) Effect of treatment temperature on the early hydration characteristics of super- plasticized silica fume blended cement pastes, Cern. Concr. Res. 35, 4, 680-687. [Google Scholar]
  • Franceschini A., Abramson S., Mancini V., Bresson B., Chassenieux C., Lequeux N. (2007) New covalent bonded polymer-calcium silicate hydrate composites, J. Mater. Chem. 17, 9, 913-922. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.