Dossier: InMoTher 2012 - Industrial Use of Molecular Thermodynamics
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 68, Number 2, March-April 2013
Dossier: InMoTher 2012 - Industrial Use of Molecular Thermodynamics
Page(s) 255 - 270
DOI https://doi.org/10.2516/ogst/2012088
Published online 20 May 2013
  • Abrams D.S., Prausnitz J.M. (1975) Statistical thermodynamics of liquid mixtures: A new expression for the excess Gibbs energy of partly or completely miscible systems, AIChE J. 21, 116-127. [CrossRef] [Google Scholar]
  • American Institute of Chemical Engineers, Design Institute for Physical Properties Research, DIPPR, 2007. [Google Scholar]
  • Anderko A., Wang P., Rafal M. (2002) Electrolyte solutions: From thermodynamic and transport property models to the simulation of industrial processes, Fluid Phase Equilib. 194-197, 123-142. [CrossRef] [Google Scholar]
  • Apelblat A., Korin E. (2009) Temperature dependence of vapor pressures over saturated aqueous solutions at invariant points of the NaCl + KCl + H2O, NaC1 + NaNO3 + H2O, KC1 + KBr + H2O, KCI + KI + H2O, KC1 + KNO3 + H2O and KC1 + K2504 + H2O systems, J. Chem., Eng. Data 54, 1619-1624. [CrossRef] [Google Scholar]
  • Cameretti L.F., Sadowski G., Mollerup J.M. (2005) Modeling of aqueous electrolyte solutions with perturbed-chain statistical associated fluid theory, Ind. Eng. Chem. Res. 44, 3355-3362. [CrossRef] [Google Scholar]
  • Castier M., Amer M.M. (2011) XSEOS: An evolving tool for teaching chemical engineering thermodynamics, Educ. Chem. Eng. 6, e62-e70. [CrossRef] [Google Scholar]
  • Chen C.C., Evans L.B. (1986) A local composition model for the excess Gibbs energy of aqueous electrolyte systems, AIChE J. 32, 444-454. [CrossRef] [Google Scholar]
  • Debye P., Mickel E. (1923) Zur Theorie der Elektrolyte, Physik Z. 24, 185. [Google Scholar]
  • Ehlker G.H., Pfenning A. (2002) Development of GEQUAC as a new group contribution method for strongly non-ideal mixtures, Fluid Phase Equilib. 203, 53-69. [CrossRef] [Google Scholar]
  • Friedman H.L. (1981) Electrolyte solutions at equilibrium, Ann. Rev. Phys. Chem. 32, 179. [CrossRef] [Google Scholar]
  • Guggenheim E.A., Turgeon J.C. (1955) Specific interaction of ions, Trans. Faraday Soc. 51, 747-761. [CrossRef] [Google Scholar]
  • Haghtalab A., Mazloumi S.H. (2009) A square-well equation of state for aqueous strong electrolyte solutions, Fluid Phase Equilib. 285, 96-104. [CrossRef] [Google Scholar]
  • Harvey A.H., Copeman T.W., Prausnitz J.M. (1988) Explicit approximations to the mean spherical approximation for electrolyte systems with unequal ion sizes, J. Phys. Chem. 92, 6432-6436. [CrossRef] [Google Scholar]
  • Held C., Cameretti L.F., Sadowski G. (2008) Modeling aqueous electrolyte solutions. Part 1. Fully dissociated electrolytes, Fluid Phase Equilib. 270, 87-96. [CrossRef] [Google Scholar]
  • Hsu H.-L., Wu Y.-C., Lee L.-S. (2003) Vapor pressures of aqueous solutions with mixed salts of NaC1 + KBr and NaBr + KC1, J. Chem. Eng. Data 48, 514-518. [CrossRef] [Google Scholar]
  • Hubert N., Gabes Y., Bourdet J.-B., Schuffenecker L. (1995) Vapor pressure measurements with a nonisothermal static method between 293.15 and 363.15 K for electrolyte solutions. Application to the H2O + NaC1 system, J. Chem. Eng. Data 40, 891-894. [CrossRef] [Google Scholar]
  • Inchekel R., Hemptinne J.-C., Fürst W. (2008) The simultaneous repetition of dielectric constant, volume and activity coefficient using an electrolyte equation of state, Fluid Phase Equilib. 271, 19-27. [CrossRef] [Google Scholar]
  • Lee B.-S., Kim K.-C. (2009) Modeling of aqueous electrolyte solutions based on PC-SAFT incorporated with primitive MSA, Korean J. Chem. Eng. 26, 1733-1747. [CrossRef] [Google Scholar]
  • Liu W.-B., Li Y.-G., Lu J.-F. (1999) A new equation of state for real aqueous ionic fluids based on electrolyte perturbation theory, mean spherical approximation and statistical associating fluid theory, Fluid Phase Equilib. 158-160, 595-606. [CrossRef] [Google Scholar]
  • Lobo V.M.M., Quaresma J.L. (1989) Handbook of electrolyte solutions, Part A and B, Elsevier, Amsterdam. [Google Scholar]
  • Loehe J.R., Donohue M.D. (1997) Recent advances in modeling thermodynamic properties of aqueous strong electrolyte systems, AIChE J. 43, 180-195. [CrossRef] [Google Scholar]
  • Marcus Y. (1988) Ionic radii in aqueous solutions, Chem. Rev. 88, 1475-1498. [CrossRef] [Google Scholar]
  • Mattedi S., Tavares F.W., Castier M. (1998) Group contribution equation of state based on the lattice fluid theory: Alkane-alkanol systems, Fluid Phase Equilib. 142, 33-54. [Google Scholar]
  • Myers J.A., Sandler S.I., Wood R.H. (2002) An equation of state for electrolyte solutions covering wide ranges of temperature, pressure and composition, Ind. Eng. Chem. Res. 41, 3282-3297. [CrossRef] [Google Scholar]
  • Nasirzadeh K., Neueder R., Kunz W. (2005) Vapor Pressures and Osmotic Coefficients of Aqueous LiOH Solutions at Temperatures Ranging from 298.15 to 363.15 K, Ind. Eng. Chem. Res. 44, 3807-3814. [CrossRef] [Google Scholar]
  • Papaiconomou N., Simonin J.-P., Bernard O., Kunz W. (2002) MSA NRTL model for the description of the thermodynamic properties of electrolyte solutions, Phys. Chem. Chem. Phys. 4, 4453-4443. [CrossRef] [Google Scholar]
  • Patil K.R., Tripathi A.D., Pathak G., Katti S.S. (1990) Thermodynamic properties of aqueous electrolyte solutions. 1. Vapor pressure of aqueous solutions of LiC1, LiBr and LiI, J. Chem. Eng. Data 35, 166-168. [CrossRef] [Google Scholar]
  • Patil K.R., Tripathi A.D., Pathak G., Katti S.S. (1991) Thermodynamic properties of aqueous electrolyte solutions. 2. Vapor pressure of aqueous solutions of NaBr, NaI, KCl, KBr, KI, RbCl, CsCl, CSBr, CsI, MgCl2, CaCl2, CaBr2, CaI2, SrCl2, SrBr2, SiI2, BaCl2 and BaBr2, J. Chem. Eng. Data 36, 225-230. [CrossRef] [Google Scholar]
  • Pauling L. (1927) The sizes of ions and structure of ionic crystals, J. Am. Chem. Soc. 49, 3, 765-790. [CrossRef] [Google Scholar]
  • Pitzer K.S. (1973) Thermodynamics of electrolytes. I. Theoretical basis and general equations, J. Phys. Chem. 77, 268-277. [CrossRef] [Google Scholar]
  • Prausnitz J.M., Lichtenthaler R.N., Azevedo E.G. (1999) Molecular thermodynamics of fluid-phase equilibria, Chapter 9, Section 4, Prentice Hall PTR, Upper Saddle River. [Google Scholar]
  • Robinson R.A., Stokes R.H. (1949) Tables of osmotic and activity coefficients of electrolytes in aqueous solutions at 25°C, Trans. Faraday Soc. 45, 616-624. [CrossRef] [Google Scholar]
  • Samili H.R., Taghikhani V., Ghotbi C. (2005) Application of the GV-MSA model to the electrolyte solutions containing mixed salts and mixed solvents, Fluid Phase Equilib. 231, 67-76. [CrossRef] [Google Scholar]
  • Santos J.P.L. (2010) Equilibrio de fases de misturas polares e iônicas via equaçâo de estado baseada em modelo de rede, D.Sc. Thesis, Universidade Federal do Rio de Janeiro. [Google Scholar]
  • Santos J.P.L., Tavares F.W., Castier M. (2010) Vapor-liquid equilibrium calculations for refrigerant mixtures with the Mattedi-Tavares-Castier EOS, Fluid Phase Equilib. 296, 133-139. [CrossRef] [Google Scholar]
  • Wu J., Prausnitz J.M. (1998) Phase equilibria for systems containing hydrocarbons, water and salt: an extended PengRobinson equation of state, Ind. Eng. Chem. Res. 37, 1634-1643. [CrossRef] [Google Scholar]
  • Zuo J.Y., Zhang D., Fürst W. (2000) Predicting LLE in mixed- solvent electrolyte systems by an electrolyte EOS, AIChE J. 46, 2318-2329. [CrossRef] [Google Scholar]
  • Zuo Y.-X., Fürst W. (1997) Prediction of vapor pressure for nonaqueous electrolyte solutions using an electrolyte equation of state, Fluid Phase Equilib. 138, 87-104. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.