Dossier: Challenges and New Approaches in EOR
Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 67, Number 6, November-December 2012
Dossier: Challenges and New Approaches in EOR
Page(s) 953 - 962
Published online 30 January 2013
  • Lake L.W. (1989) Enhanced oil recovery, Prentice Hall, Englewood Cliffs, N.J., ISBN 0132816016. [Google Scholar]
  • Larson R.G., Davis H.T., Scriven L.E. (1981) Displacement of residual nonwetting fluid from porous media, Chem. Eng. Sci. 36, 1, 75-85. [CrossRef] [Google Scholar]
  • Ng K.M., Davis H.T., Scriven L.E. (1978) Visualization of blob mechanics in flow through porous media, Chem. Eng. Sci. 33, 8, 1009-1017. [CrossRef] [Google Scholar]
  • Lenormand R., Zarcone C., Sarr A. (1983) Mechanisms of the displacement of one fluid by another in a network of capillary ducts, J. Fluid Mech. 135, 337–353. [Google Scholar]
  • Lenormand R. (1990) Liquids in porous media, J. Phys. Condens. Matter 2, SA79. [Google Scholar]
  • Lenormand R. (1989) Flow through porous-media – limits of fractal patterns, Proc. R. Soc. Lond. A 423, 1864, 159-168. [CrossRef] [Google Scholar]
  • Frette O.I., Maloy K.J., Schmittbuhl J., Hansen A. (1997) Immiscible displacement of viscosity-matched fluids in two-dimensional porous media, Phys. Rev. E 55, 3, 2969-2975. [CrossRef] [Google Scholar]
  • Cottin C., Bodiguel H., Colin A. (2010) Drainage in two-dimensional porous media : From capillary fingering to viscous flow, Phys. Rev. E 82, 4, 046315-046324. [CrossRef] [Google Scholar]
  • Cottin C., Bodiguel H., Colin A. (2011) Influence of wetting conditions on drainage in porous media : A microfluidic study, Phys. Rev. E 84, 2, 026311-026317. [CrossRef] [Google Scholar]
  • Perrin C.L., Tardy P.M.J., Sorbie K.S., Crawshaw J.C. (2006) Experimental and modeling study of newtonian and non-newtonian fluid flow in pore network micromodels, J. Colloid Interface Sci. 295, 2, 542-550. [CrossRef] [PubMed] [Google Scholar]
  • Theodoropoulou M.A., Sygouni V., Karoutsos V., Tsakiroglou C.D. (2005) Relative permeability and capillary pressure functions of porous media as related to the displacement growth pattern, Int. J. Multiphase Flow 31, 10-11, 1155-1180. [CrossRef] [Google Scholar]
  • Romano M., Chabert M., Cuenca A., Bodiguel H. (2011) Strong influence of geometrical heterogeneity on drainage in porous media, Phys. Rev. E 84, 065302-065305. [CrossRef] [Google Scholar]
  • Tsakiroglou C.D., Avraam D.G., Payatakes A.C. (2007) Transient and steady-state relative permeabilities from two-phase flow experiments in planar pore networks, Adv. Water Resour. 30, 9, 1981-1992. [Google Scholar]
  • Lovoll G., Meheust Y., Toussaint R., Schmittbuhl J., Maloy K.J. (2004) Growth activity during fingering in a porous hele-shaw cell, Phys. Rev. E 70, 2, 026301-026313. [CrossRef] [Google Scholar]
  • Wilkinson D. (1986) Percolation effects in immiscible displacement, Phys. Rev. A 34, 2, 1380-1391. [CrossRef] [PubMed] [Google Scholar]
  • Xu B., Yortsos Y.C., Salin D. (1998) Invasion percolation with viscous forces, Phys. Rev. E 57, 1, 739-751. [CrossRef] [Google Scholar]
  • Grossman T., Aharony A. (1986) Structure and perimeters of percolation clusters, J. Phys. A : Math. Gen. 19, 12, L745-L751. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.