Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 67, Number 3, May-June 2012
Page(s) 517 - 535
DOI https://doi.org/10.2516/ogst/2011140
Published online 11 November 2011
  • Descieux D., Feidt M. (2005) Etude de terrain sur la cogeneration, Rapport d’expertise A.C. Énergie, GAT 9 du CNRS [Google Scholar]
  • Radulescu M., Lottin O., Feidt M., Lombard C., Lenoc D., Ledoze S. (2006) Experimental Results with a Natural Gas Cogeneration System using a PEMFC, J. Power Sources 159, 2, 1142-1146. [CrossRef] [Google Scholar]
  • www.snecma.com/IMG/swf/anim.swf (2007). [Google Scholar]
  • Sahin B., Kodal A., Ekmerci I., Yilmaz T. (1997) Exergy Optimization for an Endoreversible Cogeneration Cycle, Int. J. Energy 22, 6, 551-557. [CrossRef] [Google Scholar]
  • Butcher C.J., Reddy B.V. (2007) Second Law Analysis of Waste Heat Recovery based Power Generation System, Int. J. Heat Mass Trans. 50, 2355-2363. [CrossRef] [Google Scholar]
  • Ust J.Y. (2007) Optimization of a Dual Cycle Cogeneration System based on a New Energetic Performance Criterion, Appl. Energy 84, 1079-1091. [CrossRef] [Google Scholar]
  • Albrecht B.A., Kok J.B.W., Van Der Meer T.H. (2007) Coproduction of Synthesis Gas and Power by Integration of Partial Oxidation Reactor Gas Turbine and Air Separation Unit, Int. J. Exergy 4, 4, 357-370. [CrossRef] [Google Scholar]
  • Rosen M.A., Hale V., Dincer I. (2004) Thermodynamics Assessment of an Integrated System and District Heating and Cooling, Int. J. Exergy 1, 1, 94-110. [CrossRef] [Google Scholar]
  • Tyagi S.K., Wang S.W., Chen G.M., Wang Q., Chandra H., Wu C. (2007) Performance Investigation under Maximum Ecological and Maximum Economic Conditions of a Complex Brayton Cycle, Int. J. Exergy 4, 1, 98-116. [CrossRef] [Google Scholar]
  • Tyagi S.K., Chen G.M., Wang Q., Kaushik S.C. (2006) Thermodynamic Analysis and Parametric Study of an Irreversible Regenerative Intercooled-Reheat Brayton Cycle, Int. J. Thermal Sci. 45, 829-840. [CrossRef] [Google Scholar]
  • Al-Madani H. (2009) Effect of Thermodynamic and Mechanical Irreversibilities on Gas Turbine Performance Enhancement by Intake Air Cooling, Int. J. Exergy 6, 2, 166-180. [CrossRef] [Google Scholar]
  • Khaliq A., Dincer I. (2011) Energetic and exergetic performance analyses of a combined heat and power plant with absorption inlet cooling and evaporative aftercooling, Energy 36, 5, 2662-2670. [CrossRef] [Google Scholar]
  • Wang W., Chen L., Sun F., Wu C. (2005) Power Optimization of an Endoreversible Closed Intercooled Regenerated Brayton Cycle Coupled to Variable Temperature Reservoirs, Appl. Therm. Eng. 25, 1097-1113. [CrossRef] [Google Scholar]
  • Wang W., Chen L., Sun F., Wu C. (2005) Power Optimization of an Endoreversible Closed Intercooled Regenerated Brayton Cycle, Int. J. Thermal Sci. 44, 89-94. [CrossRef] [Google Scholar]
  • Khaliq A., Kahn T.A. (2007) Energetic and Exergetic Efficiency Analysis of an Indirect Fired Air Turbine Combined Heat and Power System, Int. J. Exergy 4, 1, 38-53. [CrossRef] [Google Scholar]
  • Yari M., Sarabchi K. (2006) Optimization of the Part Flow Evaporative Gas Turbine Based on Exergy Method, Int. J. Exergy 3, 3, 291-304. [Google Scholar]
  • Kanoglu M., Dincer I. (2009) Performance assessment of cogeneration plants, Energ. Convers. Manage. 50, 1, 76-81. [CrossRef] [Google Scholar]
  • Balli O., Aras H. (2007) Energetic and exergetic performance evaluation of a combined heat and power system with the micro Gas Turbine (MGTCHP), Int. J. Energy Res. 31, 14, 1425-1440. [CrossRef] [Google Scholar]
  • Dincer I., Rosen M.A. (2007) Exergy analysis of cogeneration and district energy systems, Exergy 257-276. [Google Scholar]
  • Biezma M.U., San Cristobal J.R. (2006) Investment Criteria for the Selection of Cogeneration Plants – A State of the Art Review, Appl. Therm. Eng. 26, 583-588. [CrossRef] [Google Scholar]
  • Dumitrascu G., Horbaniuc B. (2010) Solar-Assisted Joule- Brayton Engines used to Reduce Carbon Dioxide Emissions, Environ. Eng. Manage. J. 9, 10, 1431-1435. [Google Scholar]
  • Ahmadi P., Dincer I. (2010) Exergoenvironmental analysis and optimization of a cogeneration plant system using Multimodal Genetic Algorithm (MGA), Energy 35, 12, 5161-5172. [CrossRef] [Google Scholar]
  • Wu C., Kiang R.L. (1991) Power Performance of a Nonisentropic Brayton Cycle, J. Eng. Gas Turbine. Power 113, 4, 501-504. [CrossRef] [Google Scholar]
  • Ferriere A. (2008) Centrales solaires thermodynamiques, Techniques de l’Ingénieur, BE 8093, 20 p. [Google Scholar]
  • Diao Z. (1994) Maximum Power Point Characteristics of a Closed Brayton Cycle, Paper 94 GT- 80 of International Gas Turbine and Aero Engine Congress and Exposition, The Hague, Netherlands, June 13-16. [Google Scholar]
  • Feidt M. (1996) Optimisation d’un cycle de Brayton moteur en contact avec des capacites thermiques finies, Revue Générale de Thermique 418-419, 662-666. [CrossRef] [Google Scholar]
  • Frutschi H.U. (2007) Closed-Cycle Gas Turbines, ASME Press. [Google Scholar]
  • Feidt M., Costea M., Postelnicu V. (2006) Comparaison entre le cycle simple de Brayton avec apport thermique impose et avec contrainte de temperature maximale, Oil Gas Sci. Technol. - Rev. IFP 61, 2, 237-245. [CrossRef] [EDP Sciences] [Google Scholar]
  • Capata R., Sciubba E. (2006) Preliminary Considerations on the Thermodynamic Feasibility and Possible Design of Ultra, Micro and Nano Gas Turbines, Int. J. Thermo. 9, 2, 81-91. [Google Scholar]
  • Colombo L.P.M., Armanasco F., Perego O. (2007) Experimentation on a Cogenerative System Based on a Microturbine, Appl. Therm. Eng. 27, 705-711. [CrossRef] [Google Scholar]
  • MacDonald C.F., Rogers C. (2008) Small Recuperated Ceramic Microturbine Demonstrator Concept, Appl. Therm. Eng. 28, 60-74. [CrossRef] [Google Scholar]
  • Kanoglu M., Dincer I., Rosen M.A. (2007) Understanding energy and exergy efficiencies for improved energy management in power plants, Energy Policy 35, 3967-3978. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • http://www.turbec.com/products/techspecific.htm [Google Scholar]
  • Heywood J.B. (1988) Internal Combustion Engine Fundamentals McGraw-Hill, Singapore. [Google Scholar]
  • Alexandru G. (2007) Analysis and Modeling of Gas Turbine Engines, Internal Report, Universite Henri Poincare, Nancy, France. [Google Scholar]
  • Hao X., Zhang G. (2007) Maximum Useful Energy-Rate Analysis of an Endoreversible Joule-Brayton Cogeneration Cycle, Appl. Energy 84, 1092-1101. [CrossRef] [Google Scholar]
  • Petre C., Feidt M., Costea M., Petrescu S. (2007) Optimization of the Direct Carnot Cycle, Appl. Therm. Eng. 27, 829-839. [CrossRef] [Google Scholar]
  • Radcenco V., Vasilescu E.E., Popescu G., Apostol V. (2007) New Approach to Thermal Power Plants Operation Regimes Maximum Power Versus Maximum Efficiency, Int. J. Thermal Sci. 46, 12, 1259-1266. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.