Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 67, Number 3, May-June 2012
Page(s) 517 - 535
Published online 11 November 2011
  • Descieux D., Feidt M. (2005) Etude de terrain sur la cogeneration, Rapport d’expertise A.C. Énergie, GAT 9 du CNRS
  • Radulescu M., Lottin O., Feidt M., Lombard C., Lenoc D., Ledoze S. (2006) Experimental Results with a Natural Gas Cogeneration System using a PEMFC, J. Power Sources 159, 2, 1142-1146. [CrossRef]
  • (2007).
  • Sahin B., Kodal A., Ekmerci I., Yilmaz T. (1997) Exergy Optimization for an Endoreversible Cogeneration Cycle, Int. J. Energy 22, 6, 551-557. [CrossRef]
  • Butcher C.J., Reddy B.V. (2007) Second Law Analysis of Waste Heat Recovery based Power Generation System, Int. J. Heat Mass Trans. 50, 2355-2363. [CrossRef]
  • Ust J.Y. (2007) Optimization of a Dual Cycle Cogeneration System based on a New Energetic Performance Criterion, Appl. Energy 84, 1079-1091. [CrossRef]
  • Albrecht B.A., Kok J.B.W., Van Der Meer T.H. (2007) Coproduction of Synthesis Gas and Power by Integration of Partial Oxidation Reactor Gas Turbine and Air Separation Unit, Int. J. Exergy 4, 4, 357-370. [CrossRef]
  • Rosen M.A., Hale V., Dincer I. (2004) Thermodynamics Assessment of an Integrated System and District Heating and Cooling, Int. J. Exergy 1, 1, 94-110. [CrossRef]
  • Tyagi S.K., Wang S.W., Chen G.M., Wang Q., Chandra H., Wu C. (2007) Performance Investigation under Maximum Ecological and Maximum Economic Conditions of a Complex Brayton Cycle, Int. J. Exergy 4, 1, 98-116. [CrossRef]
  • Tyagi S.K., Chen G.M., Wang Q., Kaushik S.C. (2006) Thermodynamic Analysis and Parametric Study of an Irreversible Regenerative Intercooled-Reheat Brayton Cycle, Int. J. Thermal Sci. 45, 829-840. [CrossRef]
  • Al-Madani H. (2009) Effect of Thermodynamic and Mechanical Irreversibilities on Gas Turbine Performance Enhancement by Intake Air Cooling, Int. J. Exergy 6, 2, 166-180. [CrossRef]
  • Khaliq A., Dincer I. (2011) Energetic and exergetic performance analyses of a combined heat and power plant with absorption inlet cooling and evaporative aftercooling, Energy 36, 5, 2662-2670. [CrossRef]
  • Wang W., Chen L., Sun F., Wu C. (2005) Power Optimization of an Endoreversible Closed Intercooled Regenerated Brayton Cycle Coupled to Variable Temperature Reservoirs, Appl. Therm. Eng. 25, 1097-1113. [CrossRef]
  • Wang W., Chen L., Sun F., Wu C. (2005) Power Optimization of an Endoreversible Closed Intercooled Regenerated Brayton Cycle, Int. J. Thermal Sci. 44, 89-94. [CrossRef]
  • Khaliq A., Kahn T.A. (2007) Energetic and Exergetic Efficiency Analysis of an Indirect Fired Air Turbine Combined Heat and Power System, Int. J. Exergy 4, 1, 38-53. [CrossRef]
  • Yari M., Sarabchi K. (2006) Optimization of the Part Flow Evaporative Gas Turbine Based on Exergy Method, Int. J. Exergy 3, 3, 291-304.
  • Kanoglu M., Dincer I. (2009) Performance assessment of cogeneration plants, Energ. Convers. Manage. 50, 1, 76-81. [CrossRef]
  • Balli O., Aras H. (2007) Energetic and exergetic performance evaluation of a combined heat and power system with the micro Gas Turbine (MGTCHP), Int. J. Energy Res. 31, 14, 1425-1440. [CrossRef]
  • Dincer I., Rosen M.A. (2007) Exergy analysis of cogeneration and district energy systems, Exergy 257-276.
  • Biezma M.U., San Cristobal J.R. (2006) Investment Criteria for the Selection of Cogeneration Plants – A State of the Art Review, Appl. Therm. Eng. 26, 583-588. [CrossRef]
  • Dumitrascu G., Horbaniuc B. (2010) Solar-Assisted Joule- Brayton Engines used to Reduce Carbon Dioxide Emissions, Environ. Eng. Manage. J. 9, 10, 1431-1435.
  • Ahmadi P., Dincer I. (2010) Exergoenvironmental analysis and optimization of a cogeneration plant system using Multimodal Genetic Algorithm (MGA), Energy 35, 12, 5161-5172. [CrossRef]
  • Wu C., Kiang R.L. (1991) Power Performance of a Nonisentropic Brayton Cycle, J. Eng. Gas Turbine. Power 113, 4, 501-504. [CrossRef]
  • Ferriere A. (2008) Centrales solaires thermodynamiques, Techniques de l’Ingénieur, BE 8093, 20 p.
  • Diao Z. (1994) Maximum Power Point Characteristics of a Closed Brayton Cycle, Paper 94 GT- 80 of International Gas Turbine and Aero Engine Congress and Exposition, The Hague, Netherlands, June 13-16.
  • Feidt M. (1996) Optimisation d’un cycle de Brayton moteur en contact avec des capacites thermiques finies, Revue Générale de Thermique 418-419, 662-666. [CrossRef]
  • Frutschi H.U. (2007) Closed-Cycle Gas Turbines, ASME Press.
  • Feidt M., Costea M., Postelnicu V. (2006) Comparaison entre le cycle simple de Brayton avec apport thermique impose et avec contrainte de temperature maximale, Oil Gas Sci. Technol. - Rev. IFP 61, 2, 237-245. [CrossRef] [EDP Sciences]
  • Capata R., Sciubba E. (2006) Preliminary Considerations on the Thermodynamic Feasibility and Possible Design of Ultra, Micro and Nano Gas Turbines, Int. J. Thermo. 9, 2, 81-91.
  • Colombo L.P.M., Armanasco F., Perego O. (2007) Experimentation on a Cogenerative System Based on a Microturbine, Appl. Therm. Eng. 27, 705-711. [CrossRef]
  • MacDonald C.F., Rogers C. (2008) Small Recuperated Ceramic Microturbine Demonstrator Concept, Appl. Therm. Eng. 28, 60-74. [CrossRef]
  • Kanoglu M., Dincer I., Rosen M.A. (2007) Understanding energy and exergy efficiencies for improved energy management in power plants, Energy Policy 35, 3967-3978. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Heywood J.B. (1988) Internal Combustion Engine Fundamentals McGraw-Hill, Singapore.
  • Alexandru G. (2007) Analysis and Modeling of Gas Turbine Engines, Internal Report, Universite Henri Poincare, Nancy, France.
  • Hao X., Zhang G. (2007) Maximum Useful Energy-Rate Analysis of an Endoreversible Joule-Brayton Cogeneration Cycle, Appl. Energy 84, 1092-1101. [CrossRef]
  • Petre C., Feidt M., Costea M., Petrescu S. (2007) Optimization of the Direct Carnot Cycle, Appl. Therm. Eng. 27, 829-839. [CrossRef]
  • Radcenco V., Vasilescu E.E., Popescu G., Apostol V. (2007) New Approach to Thermal Power Plants Operation Regimes Maximum Power Versus Maximum Efficiency, Int. J. Thermal Sci. 46, 12, 1259-1266. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.