IFP Energies nouvelles International Conference: Chemical Looping - An Alternative Concept for Efficient and Clean Use of Fossil Resources
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 66, Number 2, March-April 2011
IFP Energies nouvelles International Conference: Chemical Looping - An Alternative Concept for Efficient and Clean Use of Fossil Resources
Page(s) 249 - 263
DOI https://doi.org/10.2516/ogst/2011008
Published online 20 May 2011
  • Adánez J., Cuadrat A., Abad A., Gayán P., De Diego L.F., García-Labiano F. (2010) Ilmenite activation during consecutive redox cycles in chemical looping combustion, Energ. Fuel. 24, 1402-1413. [CrossRef]
  • Akimoto S., Nagata T., Katsura T. (1957) The TiFe2O5-Ti2FeO5 solid solution series, Nature (Lond.) 179, 37-38. [CrossRef]
  • Anovitz L.M., Treiman A.H., Essene E.J., Hemingway B.S., Westrum E.F., Wall V.J., Burriel R., Bohlen S.R. (1985) The heat capacity of ilmenite and phase equilibria in the system Fe-Ti-O, Geochim. Cosmochim. Ac. 49, 10, 2027-2040. [CrossRef]
  • Bartholomew R.F., White W.B. (1970) Growth of the intermediate oxides of titanium from borate fluxes under controlled oxygen fugacities, J. Cryst. Growth 6, 249-252. [CrossRef]
  • Becher R.G. (1963) An improved process for the beneficiation of ores containing iron, Australian patent 247 110.
  • Berguerand N., Lyngfelt A. (2008a) Design and operation of a 10 kWth chemical looping combustor for solid fuels—Testing with South African coal, Fuel 87, 2713-2726. [CrossRef]
  • Berguerand N., Lyngfelt A. (2008b) The use of petroleum coke as fuel in a 10 kWth chemical looping combustor, Int. J. Greenhouse Gas Control 2, 2, 169-179. [CrossRef]
  • Berguerand N., Lyngfelt A. (2009) Operation in a 10 kWth chemical looping combustor for solid fuel—Testing with a Mexican petroleum coke, Energy Procedia 1, 407-414. [CrossRef]
  • Berguerand N., Lyngfelt A. (2010) Batch testing of solid fuels with ilmenite in a 10 kWth chemical looping combustor, Fuel 89, 1749-1762. [CrossRef]
  • Borowiec K., Rosenqvist T. (1981) Phase relations and oxidation studies in the system Fe–Fe2O3–TiO2 at 700-1 100°C, Scand. J. Metall. 10, 217-224.
  • Borowiec K., Rosenqvist T. (1982) On the iron-titanium-magnesiumoxygen system, phase relations during reduction of Norwegian ilmenite, Report STF 34 A82100, Found. Sci. Ind. Res., Norweg. Inst. Technol., Trondheim.
  • Borowiec K., Rosenqvist T. (1985) Phase relations and oxygen potentials in the Fe–Ti–Mg–O system, Scand. J. Metall. 14, 33-43.
  • Buchdahl H.A. (1966) The Concepts of Classical Thermodynamics, Cambridge University Press, Cambridge.
  • Crystal D. (1985) A Dictionary of Linguistics and Phonetics, 2nd edition, Basil Blackwell, Oxford.
  • Cuadrat A., Abad A., Adánez J., De Diego L.F., García-Labiano F., Gayán P. (2010) Performance of ilmenite as oxygen carrier for chemical looping combustion using coal as fuel, 1st International Conference on Chemical Looping, Les Rencontres Scientifique de l’IFP, Lyon.
  • Darken L.S., Gurry R.W. (1945) The system iron-oxygen. I. The wüstite field and related equilibria, J. Am. Chem. Soc. 67, 8, 1398-1412. [CrossRef]
  • Darken L.S., Gurry R.W. (1946) The system iron-oxygen. II. Equilibrium and thermodynamics of liquid oxide and other phases, J. Am. Chem. Soc. 68, 5, 798-816. [CrossRef]
  • Deines P., Nafziger R.H., Ulmer G.C., Woermann E. (1974) Temperature-oxygen fugacity tables for selected gas mixtures in the system C-H-O at one atmosphere total pressure, Bull. Earth Mineral Sci. Exp. Station (88).
  • Den Hoed P. (1993) Matters mineral: The solid-state reduction of ilmenite, M.Sc.Eng. Dissertation, University of Natal, Durban, South Africa.
  • Den Hoed P., Luckos A. (2010) The oxidation and reduction of ilmenite in chemical looping combustion: A phase-chemical description, 1st International Conference on Chemical Looping, Les Rencontres Scientifique de l’IFP, Lyon.
  • De Vries R.C., Roy R. (1954) A phase diagram for the system Ti-TiO2 constructed from data in the literature, Ceram. Bull. 33, 12, 370-372.
  • Ender A., Hofmann R., Stapper L., Dhupia G., Woermann E. (1980) Die Stabilität von Pseudobrookitmischkristallen, Fortschr. Mineral. 58, Suppl. 1, 26-28.
  • Eriksson G., Pelton A.D., Woermann E., Ender A. (1996) Measurement and thermodynamic evaluation of phase equilibria in the Fe-Ti-O system, Berichte Bunsengesellschaft Physikalische Chemie 100, 11, 1839-1849.
  • Fetisov V.B., Leont’yev L.I., Ivanova S.V., Belyayeva N.N., Kudinov B.Z. (1969) Mechanism of reduction or iron metatitanate (by hydrogen), Russ. Metall. 1, 47-50.
  • Grey I.E., Reid A.F. (1974) Reaction sequences in the reduction of ilmenite: 3—Reduction in a commercial rotary kiln; An X-ray diffraction study, T. I. Min. Metall. C 83, C39-46.
  • Grey I.E., Reid A.F., Jones D.G. (1974a) Reaction sequences in the reduction of ilmenite: 4—Interpretation in terms of the Fe–Ti–O and Fe–Mn–Ti–O phase diagrams, T. I. Min. Metall. C 83, C105-111.
  • Grey I.E., Li C., Reid A.F. (1974b) A thermodynamic study of iron in reduced rutile, J. Solid State Chem. 11, 120-127. [CrossRef]
  • Grey I.E., Li C., Reid A.F. (1976) Phase equilibria in the system MnO–TiO2–Ti2O3 at 1473 K, J. Solid State Chem. 17, 343-352. [CrossRef]
  • Grey I.E., Merritt R.R. (1981) Stability relations in the pseudobrookite solid solution FeTi3−yO5, J. Solid State Chem. 37, 284-293. [CrossRef]
  • Grey I.E., Ward J. (1973) An X-ray and Mössbauer study of the FeTi2O5–Ti3O5 system, J. Solid State Chem. 7, 300-307. [CrossRef]
  • Gupta S.K., Rajakumar V., Grieveson P. (1989a) Phase relationships in the system Fe–Fe2O3–TiO2 at 700 and 900°C, Can. Metall. Quart. 28, 4, 331-335.
  • Haggerty S.E., Lindsley D.H. (1970) Stability of the pseudobrookite (Fe2TiO5)-ferropseudobrookite (FeTi2O5) series, Carnegie Inst. Wash., Yearb. 1968-1969 68, 247-249.
  • Halliday M.A.K. (1961) Categories of the theory of grammar, Word 17, 3, 241-291.
  • Huxley J.S. (1938) Clines: An auxiliary taxonomic principle, Nature (Lond.) 142, 219-220. [CrossRef]
  • Jerndal E., Leion H., Axelsson L., Ekvall T., Hedberg M., Johansson K., Källen M., Svensson R., Mattisson T., Lyngfelt A. (2011) Using low-cost iron-based materials as oxygen carriers for chemical looping combustion, Oil Gas Sci. Technol. In prep.
  • Jones D.G. (1973) Reaction sequences in the reduction of ilmenite: 2—Gaseous reduction by carbon monoxide, T. I. Min. Metall. C 82, C186-192.
  • Jones D.G. (1974) Optical microscopy and electron-probe microanalysis study of ilmenite reduction, T. I. Min. Metall. C 83, C1-9.
  • Johnson R.E., Woermann E., Muan A. (1971) Equilibrium studies in the system MgO-“FeO”-TiO2, Am. J. Sci. 271, 278-292. [CrossRef]
  • Kale G.M., Jacob K.T. (1992) Chemical potential of oxygen for iron-rutile-ilmenite and iron-ilmenite-ulvospinel equilibria, Metall. Trans. B 23B, 57-64. [CrossRef]
  • Kolbitsch P., Pröll T., Mayer K., Bolhàr-Nordenkampf J., Hofbauer H. (2009) Operting experience with chemical looping combustion in a 120 kW dual circulating fluidized bed (DCFB) unit, Energy Procedia 1, 1465-1472. [CrossRef]
  • Kowalski M., Spencer P.J., Neuschütz D. (1995) Phase diagrams, Verein Deutscher Eisenhüttenleute (VDEh) Slag Atlas, 2nd edition, Verlag Stahleisen GmbH, Düsseldorf.
  • Leion H., Mattisson T., Lyngfelt A. (2008a) Solid fuels in chemical looping combustion, Int. J. Greenhouse Gas Control 2, 180-193. [CrossRef]
  • Leion H., Lyngfelt A., Johansson M., Jerndal E., Mattisson T. (2008b) The use of ilmenite as an oxygen carrier in chemical looping combustion, Chem. Eng. Res. Des. 86, 1017-1026. [CrossRef]
  • Leion H., Mattisson T., Lyngfelt A. (2009) Use of ores and indus-trial products as oxygen carriers in chemical looping combustion, Energ. Fuel. 23, 2307-2315. [CrossRef]
  • Levin E.M., McMurdie H.F. (1975) Phase Diagrams for Ceramists, 1975 Supplement, Columbus, Am. Ceram. Soc., Ohio.
  • Lindsley D.H. (1976a) The crystal chemistry and structure of oxide minerals as exemplified by the Fe-Ti oxides, in Reviews in Mineralogy, Vol. 3: Oxide Minerals, Rumble D. (ed.), Mineral. Soc. Am., Washington, pp. L1-60.
  • Lindsley D.H. (1976b) Experimental studies of oxide minerals, in Reviews in Mineralogy, Vol. 3: Oxide Minerals, Rumble D. (ed.), Mineral. Soc. Am., Washington, pp. L61-88.
  • Lindsley D.H. (1981) Some experiments pertaining to the magnetite –ulvöspinel miscibility gap, Am. Mineral. 66, 759-762.
  • Lindsley D.H. (1991) Experimental studies of oxide minerals, in Reviews in Mineralogy, Vol. 25: Oxide Minerals: Their Petrologic and Magnetic Significance, Lindsley D.H. (ed.), Mineral. Soc. Am., Washington, pp. 69-106.
  • Lyngfelt A. (2010) Oxygen carriers for chemical looping combustion—Operational experience, 1st International Conference on Chemical Looping, Les Rencontres Scientifique de l’IFP, Lyon.
  • MacChesney J.B., Muan A. (1959) Studies in the system iron oxide-titanium oxide, Am. Mineral. 44, 926-945.
  • Mayer K., Pröll T., Bolhàr-Nordenkampf J., Kolbitsch P., Hofbauer H. (2008) Chemical looping combustion in a 120 kW test rig — First results, Poster presented at CFB 9, 13-16 May, Hamburg.
  • Merritt R.R., Turnbull A.G. (1974) A solid-state cell study of oxygen activities in the Fe-Ti-O system, J. Solid State Chem. 10, 252-259. [CrossRef]
  • Merritt R.R., Hyde B.G., Bursill L.A., Philp D.K. (1973) The thermodynamics of the titanium + oxygen system: An isothermal gravimetric study of the composition range Ti3O5 to TiO2 at 1304 K, Philos. T. Roy. Soc. A 274, 627-661, plate 8. [CrossRef]
  • Muan A. (1958) Phase equilibria at high temperatures in oxide systems involving changes in oxidation states, Am. J. Sci. 256, 171-207. [CrossRef]
  • Muan A. (1970) The effect of oxygen pressure on phase relations in oxide systems, in Phase Diagrams: Materials Science and Technology, Vol. 2: The Use of Phase Diagrams in Metal, Refractory, Ceramic, and Cement Technology, Alper A.M. (ed.), Academic Press, New York, pp. 1-19.
  • OED (1989) The Oxford English Dictionary, 2nd edition, prepared by Simpson J.A., Weiner E.S.C., Oxford University Press.
  • O’Neill H. St C., Pownceby M.I., Wall V.J. (1988) Ilmenite-rutile-iron and ulvospinel-ilmenite-iron equilibria and the thermochemistry of ilmenite (FeTiO3) and ulvospinel (Fe2TiO4), Geochim. Cosmochim. Ac. 52, 8, 2065-2072. [CrossRef]
  • Pauling L. (1930) The crystal structure of pseudobrookite, Z. Kristallogr. 73, 97-112.
  • Perreault P., Rifflart S., Patience G.-S. (2010) Ilmenite agglomeration during sequential oxidation-reduction, 1st International Conference on Chemical Looping, Les Rencontres Scientifique de l’IFP, Lyon.
  • Porter V.R. (1965) Studies in the titanium-oxygen system and the defect nature of rutile, PhD Dissertation, The Pennsylvania State University, University Park, PA.
  • Price G.D. (1981) Subsolidus phase relations in the titanomagnetite solid solution series, Am. Mineral. 66, 751-758.
  • Pröll T., Mayer K., Bolhàr-Nordenkampf J., Kolbitsch P., Mattisson T., Lyngfelt A., Hofbauer H. (2009) Natural minerals as oxygen carriers for chemical looping combustion in a dual circulating fluidized bed system, Energy Procedia 1, 27-34. [CrossRef]
  • Reece M., Morrell R. (1991) Electron microscope study of nonstoichiometric titania, J. Mater. Sci 26, 20, 5666-5674.
  • Reid A.F., Ward J.C. (1971) Solid solution in the FeTi2O5-Ti3O5 system, Acta Chem. Scand. 25, 4, 1475-1476. [CrossRef]
  • Saha P., Biggar G.M. (1974) Subsolidus reduction equilibria in the system Fe-Ti-O, Indian J. Earth Sci. 1, 1, 43-59.
  • Schwebel G.L., Wiedermann F., Krumm W. (2010) Reduction performance of ilmenite and hematite oxygen carriers in the context of a new CLC reactor concept, 1st International Conference on Chemical Looping, Les Rencontres Scientifique de l’IFP, Lyon.
  • Shchepëtkin A.A., Antonov V.K., Dvinin V.T., Chufarov G.I. (1968) Crystal chemical changes in the dissociation of iron titanate Fe2TiO4 under equilibrium conditions, Russ. J. Inorg. Chem. 13, 12, 1633-1634.
  • Simons B., Woermann E. (1978) Iron titanium oxides in equilibrium with metallic iron, Contrib. Mineral. Petr. 66, 81-89. [CrossRef]
  • Spencer K.J., Lindsley D.H. (1981) A solution model for coexisting iron-titanium oxides, Am. Mineral. 66, 1189-1201.
  • Suzuki K., Sambongi K. (1972) High-temperature thermodynamic properties in the titanium-oxygen system, Tetsu To Hagane 58, 12, 1579-1593.
  • Taylor R.W. (1964) Phase equilibria in the system FeO-Fe2O3-TiO2 at 1300°C, Am. Mineral. 49, 1016-1030.
  • Taylor R.W., Schmalzried H. (1964) The free energy of formation of some titanates, silicates, and magnesium aluminate from measurements made with galvanic cells, J. Phys. Chem. 68, 9, 2444-2449. [CrossRef]
  • Vincent E.A., Wright J.B., Chevallier R., Mathieu S. (1957) Heating experiments on some natural titaniferous magnetites, Mineral. Mag. 31, 624-655. [CrossRef]
  • Wahlbeck P.G., Gilles P.W. (1966) Reinvestigation of the phase diagram for the system titanium-oxygen, J. Am. Ceram. Soc. 49, 4, 180-183. [CrossRef]
  • Webster A.H., Bright N.F.H. (1961) The system iron-titaniumoxygen at 1200°C and oxygen partial pressures between 1 atm and 2 × 10-14 atm, J. Am. Ceram. Soc. 44, 3, 110-116. [CrossRef]
  • Zador S. (1968) Non-stoichiometric measurements in dioxides of the rutile structure, in Electromotive Force Measurements in Hightemperature Systems, Alcock C.B. (ed.), Inst. Min. Metall., London, pp. 145-150.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.