IFP Energies nouvelles International Conference: Chemical Looping - An Alternative Concept for Efficient and Clean Use of Fossil Resources
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 66, Number 2, March-April 2011
IFP Energies nouvelles International Conference: Chemical Looping - An Alternative Concept for Efficient and Clean Use of Fossil Resources
Page(s) 249 - 263
DOI https://doi.org/10.2516/ogst/2011008
Published online 20 May 2011
  • Adánez J., Cuadrat A., Abad A., Gayán P., De Diego L.F., García-Labiano F. (2010) Ilmenite activation during consecutive redox cycles in chemical looping combustion, Energ. Fuel. 24, 1402-1413. [CrossRef] [Google Scholar]
  • Akimoto S., Nagata T., Katsura T. (1957) The TiFe2O5-Ti2FeO5 solid solution series, Nature (Lond.) 179, 37-38. [CrossRef] [Google Scholar]
  • Anovitz L.M., Treiman A.H., Essene E.J., Hemingway B.S., Westrum E.F., Wall V.J., Burriel R., Bohlen S.R. (1985) The heat capacity of ilmenite and phase equilibria in the system Fe-Ti-O, Geochim. Cosmochim. Ac. 49, 10, 2027-2040. [CrossRef] [Google Scholar]
  • Bartholomew R.F., White W.B. (1970) Growth of the intermediate oxides of titanium from borate fluxes under controlled oxygen fugacities, J. Cryst. Growth 6, 249-252. [CrossRef] [Google Scholar]
  • Becher R.G. (1963) An improved process for the beneficiation of ores containing iron, Australian patent 247 110. [Google Scholar]
  • Berguerand N., Lyngfelt A. (2008a) Design and operation of a 10 kWth chemical looping combustor for solid fuels—Testing with South African coal, Fuel 87, 2713-2726. [CrossRef] [Google Scholar]
  • Berguerand N., Lyngfelt A. (2008b) The use of petroleum coke as fuel in a 10 kWth chemical looping combustor, Int. J. Greenhouse Gas Control 2, 2, 169-179. [CrossRef] [Google Scholar]
  • Berguerand N., Lyngfelt A. (2009) Operation in a 10 kWth chemical looping combustor for solid fuel—Testing with a Mexican petroleum coke, Energy Procedia 1, 407-414. [CrossRef] [Google Scholar]
  • Berguerand N., Lyngfelt A. (2010) Batch testing of solid fuels with ilmenite in a 10 kWth chemical looping combustor, Fuel 89, 1749-1762. [CrossRef] [Google Scholar]
  • Borowiec K., Rosenqvist T. (1981) Phase relations and oxidation studies in the system Fe–Fe2O3–TiO2 at 700-1 100°C, Scand. J. Metall. 10, 217-224. [Google Scholar]
  • Borowiec K., Rosenqvist T. (1982) On the iron-titanium-magnesiumoxygen system, phase relations during reduction of Norwegian ilmenite, Report STF 34 A82100, Found. Sci. Ind. Res., Norweg. Inst. Technol., Trondheim. [Google Scholar]
  • Borowiec K., Rosenqvist T. (1985) Phase relations and oxygen potentials in the Fe–Ti–Mg–O system, Scand. J. Metall. 14, 33-43. [Google Scholar]
  • Buchdahl H.A. (1966) The Concepts of Classical Thermodynamics, Cambridge University Press, Cambridge. [Google Scholar]
  • Crystal D. (1985) A Dictionary of Linguistics and Phonetics, 2nd edition, Basil Blackwell, Oxford. [Google Scholar]
  • Cuadrat A., Abad A., Adánez J., De Diego L.F., García-Labiano F., Gayán P. (2010) Performance of ilmenite as oxygen carrier for chemical looping combustion using coal as fuel, 1st International Conference on Chemical Looping, Les Rencontres Scientifique de l’IFP, Lyon. [Google Scholar]
  • Darken L.S., Gurry R.W. (1945) The system iron-oxygen. I. The wüstite field and related equilibria, J. Am. Chem. Soc. 67, 8, 1398-1412. [CrossRef] [Google Scholar]
  • Darken L.S., Gurry R.W. (1946) The system iron-oxygen. II. Equilibrium and thermodynamics of liquid oxide and other phases, J. Am. Chem. Soc. 68, 5, 798-816. [CrossRef] [Google Scholar]
  • Deines P., Nafziger R.H., Ulmer G.C., Woermann E. (1974) Temperature-oxygen fugacity tables for selected gas mixtures in the system C-H-O at one atmosphere total pressure, Bull. Earth Mineral Sci. Exp. Station (88). [Google Scholar]
  • Den Hoed P. (1993) Matters mineral: The solid-state reduction of ilmenite, M.Sc.Eng. Dissertation, University of Natal, Durban, South Africa. [Google Scholar]
  • Den Hoed P., Luckos A. (2010) The oxidation and reduction of ilmenite in chemical looping combustion: A phase-chemical description, 1st International Conference on Chemical Looping, Les Rencontres Scientifique de l’IFP, Lyon. [Google Scholar]
  • De Vries R.C., Roy R. (1954) A phase diagram for the system Ti-TiO2 constructed from data in the literature, Ceram. Bull. 33, 12, 370-372. [Google Scholar]
  • Ender A., Hofmann R., Stapper L., Dhupia G., Woermann E. (1980) Die Stabilität von Pseudobrookitmischkristallen, Fortschr. Mineral. 58, Suppl. 1, 26-28. [Google Scholar]
  • Eriksson G., Pelton A.D., Woermann E., Ender A. (1996) Measurement and thermodynamic evaluation of phase equilibria in the Fe-Ti-O system, Berichte Bunsengesellschaft Physikalische Chemie 100, 11, 1839-1849. [Google Scholar]
  • Fetisov V.B., Leont’yev L.I., Ivanova S.V., Belyayeva N.N., Kudinov B.Z. (1969) Mechanism of reduction or iron metatitanate (by hydrogen), Russ. Metall. 1, 47-50. [Google Scholar]
  • Grey I.E., Reid A.F. (1974) Reaction sequences in the reduction of ilmenite: 3—Reduction in a commercial rotary kiln; An X-ray diffraction study, T. I. Min. Metall. C 83, C39-46. [Google Scholar]
  • Grey I.E., Reid A.F., Jones D.G. (1974a) Reaction sequences in the reduction of ilmenite: 4—Interpretation in terms of the Fe–Ti–O and Fe–Mn–Ti–O phase diagrams, T. I. Min. Metall. C 83, C105-111. [Google Scholar]
  • Grey I.E., Li C., Reid A.F. (1974b) A thermodynamic study of iron in reduced rutile, J. Solid State Chem. 11, 120-127. [CrossRef] [Google Scholar]
  • Grey I.E., Li C., Reid A.F. (1976) Phase equilibria in the system MnO–TiO2–Ti2O3 at 1473 K, J. Solid State Chem. 17, 343-352. [CrossRef] [Google Scholar]
  • Grey I.E., Merritt R.R. (1981) Stability relations in the pseudobrookite solid solution FeTi3−yO5, J. Solid State Chem. 37, 284-293. [CrossRef] [Google Scholar]
  • Grey I.E., Ward J. (1973) An X-ray and Mössbauer study of the FeTi2O5–Ti3O5 system, J. Solid State Chem. 7, 300-307. [CrossRef] [Google Scholar]
  • Gupta S.K., Rajakumar V., Grieveson P. (1989a) Phase relationships in the system Fe–Fe2O3–TiO2 at 700 and 900°C, Can. Metall. Quart. 28, 4, 331-335. [Google Scholar]
  • Haggerty S.E., Lindsley D.H. (1970) Stability of the pseudobrookite (Fe2TiO5)-ferropseudobrookite (FeTi2O5) series, Carnegie Inst. Wash., Yearb. 1968-1969 68, 247-249. [Google Scholar]
  • Halliday M.A.K. (1961) Categories of the theory of grammar, Word 17, 3, 241-291. [Google Scholar]
  • Huxley J.S. (1938) Clines: An auxiliary taxonomic principle, Nature (Lond.) 142, 219-220. [CrossRef] [Google Scholar]
  • Jerndal E., Leion H., Axelsson L., Ekvall T., Hedberg M., Johansson K., Källen M., Svensson R., Mattisson T., Lyngfelt A. (2011) Using low-cost iron-based materials as oxygen carriers for chemical looping combustion, Oil Gas Sci. Technol. In prep. [Google Scholar]
  • Jones D.G. (1973) Reaction sequences in the reduction of ilmenite: 2—Gaseous reduction by carbon monoxide, T. I. Min. Metall. C 82, C186-192. [Google Scholar]
  • Jones D.G. (1974) Optical microscopy and electron-probe microanalysis study of ilmenite reduction, T. I. Min. Metall. C 83, C1-9. [Google Scholar]
  • Johnson R.E., Woermann E., Muan A. (1971) Equilibrium studies in the system MgO-“FeO”-TiO2, Am. J. Sci. 271, 278-292. [CrossRef] [Google Scholar]
  • Kale G.M., Jacob K.T. (1992) Chemical potential of oxygen for iron-rutile-ilmenite and iron-ilmenite-ulvospinel equilibria, Metall. Trans. B 23B, 57-64. [CrossRef] [Google Scholar]
  • Kolbitsch P., Pröll T., Mayer K., Bolhàr-Nordenkampf J., Hofbauer H. (2009) Operting experience with chemical looping combustion in a 120 kW dual circulating fluidized bed (DCFB) unit, Energy Procedia 1, 1465-1472. [CrossRef] [Google Scholar]
  • Kowalski M., Spencer P.J., Neuschütz D. (1995) Phase diagrams, Verein Deutscher Eisenhüttenleute (VDEh) Slag Atlas, 2nd edition, Verlag Stahleisen GmbH, Düsseldorf. [Google Scholar]
  • Leion H., Mattisson T., Lyngfelt A. (2008a) Solid fuels in chemical looping combustion, Int. J. Greenhouse Gas Control 2, 180-193. [CrossRef] [Google Scholar]
  • Leion H., Lyngfelt A., Johansson M., Jerndal E., Mattisson T. (2008b) The use of ilmenite as an oxygen carrier in chemical looping combustion, Chem. Eng. Res. Des. 86, 1017-1026. [CrossRef] [Google Scholar]
  • Leion H., Mattisson T., Lyngfelt A. (2009) Use of ores and indus-trial products as oxygen carriers in chemical looping combustion, Energ. Fuel. 23, 2307-2315. [CrossRef] [Google Scholar]
  • Levin E.M., McMurdie H.F. (1975) Phase Diagrams for Ceramists, 1975 Supplement, Columbus, Am. Ceram. Soc., Ohio. [Google Scholar]
  • Lindsley D.H. (1976a) The crystal chemistry and structure of oxide minerals as exemplified by the Fe-Ti oxides, in Reviews in Mineralogy, Vol. 3: Oxide Minerals, Rumble D. (ed.), Mineral. Soc. Am., Washington, pp. L1-60. [Google Scholar]
  • Lindsley D.H. (1976b) Experimental studies of oxide minerals, in Reviews in Mineralogy, Vol. 3: Oxide Minerals, Rumble D. (ed.), Mineral. Soc. Am., Washington, pp. L61-88. [Google Scholar]
  • Lindsley D.H. (1981) Some experiments pertaining to the magnetite –ulvöspinel miscibility gap, Am. Mineral. 66, 759-762. [Google Scholar]
  • Lindsley D.H. (1991) Experimental studies of oxide minerals, in Reviews in Mineralogy, Vol. 25: Oxide Minerals: Their Petrologic and Magnetic Significance, Lindsley D.H. (ed.), Mineral. Soc. Am., Washington, pp. 69-106. [Google Scholar]
  • Lyngfelt A. (2010) Oxygen carriers for chemical looping combustion—Operational experience, 1st International Conference on Chemical Looping, Les Rencontres Scientifique de l’IFP, Lyon. [Google Scholar]
  • MacChesney J.B., Muan A. (1959) Studies in the system iron oxide-titanium oxide, Am. Mineral. 44, 926-945. [Google Scholar]
  • Mayer K., Pröll T., Bolhàr-Nordenkampf J., Kolbitsch P., Hofbauer H. (2008) Chemical looping combustion in a 120 kW test rig — First results, Poster presented at CFB 9, 13-16 May, Hamburg. [Google Scholar]
  • Merritt R.R., Turnbull A.G. (1974) A solid-state cell study of oxygen activities in the Fe-Ti-O system, J. Solid State Chem. 10, 252-259. [CrossRef] [Google Scholar]
  • Merritt R.R., Hyde B.G., Bursill L.A., Philp D.K. (1973) The thermodynamics of the titanium + oxygen system: An isothermal gravimetric study of the composition range Ti3O5 to TiO2 at 1304 K, Philos. T. Roy. Soc. A 274, 627-661, plate 8. [CrossRef] [Google Scholar]
  • Muan A. (1958) Phase equilibria at high temperatures in oxide systems involving changes in oxidation states, Am. J. Sci. 256, 171-207. [CrossRef] [Google Scholar]
  • Muan A. (1970) The effect of oxygen pressure on phase relations in oxide systems, in Phase Diagrams: Materials Science and Technology, Vol. 2: The Use of Phase Diagrams in Metal, Refractory, Ceramic, and Cement Technology, Alper A.M. (ed.), Academic Press, New York, pp. 1-19. [Google Scholar]
  • OED (1989) The Oxford English Dictionary, 2nd edition, prepared by Simpson J.A., Weiner E.S.C., Oxford University Press. [Google Scholar]
  • O’Neill H. St C., Pownceby M.I., Wall V.J. (1988) Ilmenite-rutile-iron and ulvospinel-ilmenite-iron equilibria and the thermochemistry of ilmenite (FeTiO3) and ulvospinel (Fe2TiO4), Geochim. Cosmochim. Ac. 52, 8, 2065-2072. [CrossRef] [Google Scholar]
  • Pauling L. (1930) The crystal structure of pseudobrookite, Z. Kristallogr. 73, 97-112. [Google Scholar]
  • Perreault P., Rifflart S., Patience G.-S. (2010) Ilmenite agglomeration during sequential oxidation-reduction, 1st International Conference on Chemical Looping, Les Rencontres Scientifique de l’IFP, Lyon. [Google Scholar]
  • Porter V.R. (1965) Studies in the titanium-oxygen system and the defect nature of rutile, PhD Dissertation, The Pennsylvania State University, University Park, PA. [Google Scholar]
  • Price G.D. (1981) Subsolidus phase relations in the titanomagnetite solid solution series, Am. Mineral. 66, 751-758. [Google Scholar]
  • Pröll T., Mayer K., Bolhàr-Nordenkampf J., Kolbitsch P., Mattisson T., Lyngfelt A., Hofbauer H. (2009) Natural minerals as oxygen carriers for chemical looping combustion in a dual circulating fluidized bed system, Energy Procedia 1, 27-34. [CrossRef] [Google Scholar]
  • Reece M., Morrell R. (1991) Electron microscope study of nonstoichiometric titania, J. Mater. Sci 26, 20, 5666-5674. [Google Scholar]
  • Reid A.F., Ward J.C. (1971) Solid solution in the FeTi2O5-Ti3O5 system, Acta Chem. Scand. 25, 4, 1475-1476. [CrossRef] [Google Scholar]
  • Saha P., Biggar G.M. (1974) Subsolidus reduction equilibria in the system Fe-Ti-O, Indian J. Earth Sci. 1, 1, 43-59. [Google Scholar]
  • Schwebel G.L., Wiedermann F., Krumm W. (2010) Reduction performance of ilmenite and hematite oxygen carriers in the context of a new CLC reactor concept, 1st International Conference on Chemical Looping, Les Rencontres Scientifique de l’IFP, Lyon. [Google Scholar]
  • Shchepëtkin A.A., Antonov V.K., Dvinin V.T., Chufarov G.I. (1968) Crystal chemical changes in the dissociation of iron titanate Fe2TiO4 under equilibrium conditions, Russ. J. Inorg. Chem. 13, 12, 1633-1634. [Google Scholar]
  • Simons B., Woermann E. (1978) Iron titanium oxides in equilibrium with metallic iron, Contrib. Mineral. Petr. 66, 81-89. [CrossRef] [Google Scholar]
  • Spencer K.J., Lindsley D.H. (1981) A solution model for coexisting iron-titanium oxides, Am. Mineral. 66, 1189-1201. [Google Scholar]
  • Suzuki K., Sambongi K. (1972) High-temperature thermodynamic properties in the titanium-oxygen system, Tetsu To Hagane 58, 12, 1579-1593. [Google Scholar]
  • Taylor R.W. (1964) Phase equilibria in the system FeO-Fe2O3-TiO2 at 1300°C, Am. Mineral. 49, 1016-1030. [Google Scholar]
  • Taylor R.W., Schmalzried H. (1964) The free energy of formation of some titanates, silicates, and magnesium aluminate from measurements made with galvanic cells, J. Phys. Chem. 68, 9, 2444-2449. [CrossRef] [Google Scholar]
  • Vincent E.A., Wright J.B., Chevallier R., Mathieu S. (1957) Heating experiments on some natural titaniferous magnetites, Mineral. Mag. 31, 624-655. [CrossRef] [Google Scholar]
  • Wahlbeck P.G., Gilles P.W. (1966) Reinvestigation of the phase diagram for the system titanium-oxygen, J. Am. Ceram. Soc. 49, 4, 180-183. [CrossRef] [Google Scholar]
  • Webster A.H., Bright N.F.H. (1961) The system iron-titaniumoxygen at 1200°C and oxygen partial pressures between 1 atm and 2 × 10-14 atm, J. Am. Ceram. Soc. 44, 3, 110-116. [CrossRef] [Google Scholar]
  • Zador S. (1968) Non-stoichiometric measurements in dioxides of the rutile structure, in Electromotive Force Measurements in Hightemperature Systems, Alcock C.B. (ed.), Inst. Min. Metall., London, pp. 145-150. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.