Dossier: The Fischer-Tropsch Process
Open Access
Oil & Gas Science and Technology - Rev. IFP
Volume 64, Number 1, January-February 2009
Dossier: The Fischer-Tropsch Process
Page(s) 91 - 112
Published online 07 March 2009
  • Claeys M., van Steen E. (2004) Basic studies, Stud. Surf. Sci. Catal. 152, 601-680. [CrossRef] [Google Scholar]
  • Dry M.E. (2003) Fischer-Tropsch synthesis – industrial, in Encyclopedia of Catalysis, Vol. 3, Horvath I.T. (ed.), John Wiley and Sons. [Google Scholar]
  • Marcilly C. (2003) Procédés de conversion des charges lourdes, in Catalyse acido-basique, application au raffinage et à la pétrochimie, Technip, Paris. [Google Scholar]
  • Shah P.P., Sturtevant G.C., Gregor J.H., Umbach, M.J.J., Padrta F.G., Steigleder K.Z., Fischer-Tropsch Wax Characterization and Upgrading: Final Report, UOP Inc., available on [Google Scholar]
  • Leckel D. (2007) Low-Pressure Hydrocracking of Coal-Derived Fischer-Tropsch Waxes to Diesel, Energ. Fuel. 21, 1425-1431. [CrossRef] [Google Scholar]
  • Calemma V.,Correra S.,Perego C.,Pollesel P.,Pellegrini L. (2005) Hydroconversion of Fischer-Tropsch waxes: Assessment of the operating conditions effect by factorial design experiments, Catal. Today 106, 282-287. [CrossRef] [Google Scholar]
  • Weisz P.B. (1962) Polyfonctional Heterogeneous Catalysis, Adv. Catal. 13, 137-190. [Google Scholar]
  • Coonradt H.L.,Garwood W.E. (1964) Mechanism of hydrocracking, Ind. Eng. Chem. Proc. Design Dev. 3, 38-45. [CrossRef] [Google Scholar]
  • Kazansky V.B.,Senchenya I.N. (1989) Quantum chemical study of the electronic structure and geometry of surface alkoxy groups as probable active intermediates of heterogeneous acidic catalysts: What are the adsorbed carbenium ions? J. Catal. 119, 1, 108-120. [CrossRef] [Google Scholar]
  • Rigby A.M.,Kramer G.J., van Santen R.A. (1997) Mechanisms of Hydrocarbon Conversion in Zeolites: A Quantum Mechanical Study, J. Catal. 170, 1, 1-10. [CrossRef] [Google Scholar]
  • Denayer J.F.,Baron G.V.,Vanbutsele G.,Jacobs P.A.,Martens J.A. (2000) Evidence for Alkylcarbenium Ion Reaction Intermediates from Intrinsic Reaction Kinetics of C6–C9 n-Alkane Hydroisomerization and Hydrocracking on Pt/H–Y and Pt/USY Zeolites, J. Catal. 190, 2, 469-473. [CrossRef] [Google Scholar]
  • Thybaut J.W.,Marin G.B.,Baron G.V.,Jacobs P.A.,Martens J.A. (2001) Alkene Protonation Enthalpy Determination from Fundamental Kinetic Modeling of Alkane Hydroconversion on Pt/H-(US)Y-Zeolite, J. Catal. 202, 2, 324-339. [Google Scholar]
  • Thybaut J.W., Laxmi Narasimhan C.S., Marin G.B., Denayer J.F.M., Baron G.V., Jacobs PA.,Martens J.A. (2004) Alkylcarbenium Ion Concentrations in Zeolite Pores During Octane Hydrocracking on Pt/H-USY Zeolite, Catal. Lett. 94, 1-2, 81-88. [CrossRef] [Google Scholar]
  • Marcilly C. (2003) Chimie des carbocations, in Catalyse acido-basique, application au raffinage et à la pétrochimie, Technip, Paris. [Google Scholar]
  • Chevalier F.,Guisnet M.,Maurel R. (1977) Tracer study of the isomerization of paraffins on bifunctional catalysts, Proceedings of the Sixth International Congress on Catalysis 1, 478-487. [Google Scholar]
  • Ribeiro F.,Marcilly C.,Guisnet M. (1982) Hydroisomerization of n-hexane on platinum zeolites, J. Catal. 78, 2, 267-280. [CrossRef] [Google Scholar]
  • Weitkamp J.,Jacobs P.A.,Martens J.A. (1983) Isomerization and hydrocracking of C9 through C16 n-alkanes on Pt/HZSM-5 zeolite, Appl. Catal. 8, 123-141. [CrossRef] [Google Scholar]
  • Martens J.A.,Jacobs P.A.,Weitkamp J. (1986) Attempts to rationalize the distribution of hydrocracked products. I: qualitative description of the primary hydrocracking modes of long-chain paraffins in open zeolites, Appl. Catal. 20, 239-281. [CrossRef] [Google Scholar]
  • Martens J.A.,Jacobs P.A.,Weitkamp J. (1986) Attempts to rationalize the distribution of hydrocracked products. II. Relative rates of primary hydrocracking modes of long chain paraffins in open zeolites, Appl. Catal. 20, 283-303. [CrossRef] [Google Scholar]
  • Bouchy C. (2007) unpublished results. [Google Scholar]
  • Martens G.G.,Marin G.B.,Martens J.A.,Jacobs P.A.,Baron G.V. (2000) A Fundamental Model for Hydrocracking of C8 to C12 Alkanes on Pt/US-Y Zeolites, J. Catal. 195, 2, 253-267. [Google Scholar]
  • Martens G.G.,Thybaut J.W.,Marin G.B. (2001) Single-Event Rate Parameters for the Hydrocracking of Cycloalkanes on Pt/US-Y Zeolites, Ind. Eng. Chem. Res. 40, 1832-1844. [CrossRef] [Google Scholar]
  • Thybaut J.W.,Marin G.B. (2003) Kinetic Modelling of the Conversion of Complex Hydrocarbon Feedstocks by Acid Catalysts, Chem. Eng. Technol. 26, 4, 509-514. [CrossRef] [Google Scholar]
  • Kumar H.,Froment G. (2007) A Generalized Mechanistic Kinetic Model for the Hydroisomerization and Hydrocracking of Long-Chain Paraffins, Ind. Eng. Chem. Res. 46, 4075-4090. [Google Scholar]
  • LaxmiNarashiman C.S.,Thybaut J.,Martens J.A.,Jacobs P.A.,Denayer J.F.,Marin G.B. (2006) A Unified Singleevent Microkinetic Model for Alkane Hydroconversion in Different Aggregation States on Pt/H-USY Zeolites, J. Phys. Chem. B 110, 6750-6758. [CrossRef] [PubMed] [Google Scholar]
  • Calero S.,Smit B.,Krishna R. (2001) Configurational Entropy Effects during Sorption of Hexane Isomers in Silicalite, J. Catal. 202, 2, 395-401. [CrossRef] [Google Scholar]
  • Denayer J.F.M., De Jonckheere B.A.,Hloch M.,Marin G.B.,Vanbutsele G.,Martens J.A.,Baron G.V. (2002) Molecular competition of C7 and C9 n-alkanes in vapor and liquid phase hydroconversion over bifunctional Pt/USY zeolite catalysts, J. Catal. 210, 2, 445-452. [CrossRef] [Google Scholar]
  • Weitkamp J. (1975) The influence of chain length in hydrocracking and hydroisomerization of n-alkanes, in ACS Symposium Series, Ward J.W., Qader S.A. (eds.), American Chemical Society, Washington DC, Vol. 20, pp. 1-27. [Google Scholar]
  • Sie S.T.,Senden M.M.G., Van Wechem H.M.H. (1991) Conversion of natural gas to transportation fuels via the shell middle distillate synthesis process (SMDS), Catal. Today 8, 371-394. [CrossRef] [Google Scholar]
  • Weitkamp J., Ernst S. (1990) Factors influencing the selectivity of hydrocracking in zeolites, in Guidelines for Mastering the Properties of Molecular Sieves, Barthomeuf D., Derouane E.G., Holderich W. (eds.), Plenum Press, New York. [Google Scholar]
  • Martens J.A.,Weitkamp J.,Jacobs P.A. (1985) Primary cracking modes of long chain paraffinic hydrocarbons in open acid zeolites, Stud. Surf. Sci. Catal. 20, 427-436. [CrossRef] [Google Scholar]
  • Marcilly C. (2003) Réactivité et modes de transformation des grandes familles d'hydrocarbures, in Catalyse acido-basique, application au raffinage et à la pétrochimie, Technip, Paris. [Google Scholar]
  • Thybaut J.W., LaxmiNarasimhan C.S.,Denayer J.F.,Baron G.V.,Jacobs P.A.,Martens J.A.,Marin G.B. (2005) Acid-Metal Balance of a Hydrocracking Catalyst: Ideal versus Nonideal Behavior, Ind. Eng. Chem. Res. 44, 5159-5169. [CrossRef] [Google Scholar]
  • Dauns H., Ernst S., Weitkamp J. (1986) The Influence of Hydrogen Sulfide in Hydrocracking of n-Dodecane over Palladium/Faujasite Catalysts, in New Developments in Zeolite Science and Technology, Murakami Y., Iijima A., Ward J.W. (eds.), Elsevier, Amsterdam, pp. 787-794. [Google Scholar]
  • Nat P.J. (1988) NPRA Annual Meeting, San Antonio, TX, AM-88-75. [Google Scholar]
  • Franck J.P.,Lepage J.F. (1981) Catalysts for the hydrocracking of heavy gas oil into middle distillates, Stud. Surf. Sci. Catal. 7B, 792-803. [CrossRef] [Google Scholar]
  • Scherzer J., Gruia A. (1996) Hydrocracking Catalysts, in Hydrocracking Science and Technology, Marcel Dekker, Inc., New York Basel. [Google Scholar]
  • Maxwell I.E. (1987) Zeolite catalysis in hydroprocessing technology, Catal. Today 1, 385-413. [CrossRef] [Google Scholar]
  • Leckel D. (2005) Hydrocracking of Iron-Catalyzed Fischer-Tropsch Waxes, Energ. Fuel. 19, 1795-1803. [CrossRef] [Google Scholar]
  • de Haan R.,Joorst G.,Mokoena G.E.,Nicolaides C.P. (2007) Non-sulfided nickel supported on silicated alumina as catalyst for the hydrocracking of n-hexadecane and of iron-based Fischer-Tropsch wax, Appl. Catal. A: Gen. 327, 247-254. [CrossRef] [Google Scholar]
  • Böhringer W.,Kotsiopoulos A., de Boer M.,Knottenbelt C.,Fletcher J.C.Q. (2007) Selective Fischer-Tropsch wax hydrocracking – opportunity for improvement of overall gas-to-liquids processing, Stud. Surf. Sci. Catal. 163, 345-365. [CrossRef] [Google Scholar]
  • Ponec V.,Bond G.C. (1995) Reactions of alkanes and reforming of naphtha, Stud. Surf. Sci. Catal. 95, 583-677. [CrossRef] [Google Scholar]
  • Clark J.R., Winttenbrink R.J., Davies S.M., Riley K.L. (1999) WO 99/10098 patent, assigned to Exxon Research and Engineering Company, “Supported Ni-Cu hydroconversion catalyst”. [Google Scholar]
  • Sinfelt J.H.,Carter J.L.,Yates D.J.C. (1972) Catalytic hydrogenolysis and dehydrogenation over copper-nickel alloys, J. Catal. 24, 2, 283-296. [CrossRef] [Google Scholar]
  • de Haan R., Joorst G., Nicolaides C.P. (2007) US 2007/0131586 A1 patent assigned to Sasol Technology, “Non-sulfided Ni-based hydrocracking catalysts”. [Google Scholar]
  • Alvarez F.,Ribeiro F.R.,Perot G.,Thomazeau C.,Guisnet M. (1996) Hydroisomerization and Hydrocracking of Alkanes: 7. Influence of the Balance between Acid and Hydrogenating Functions on the Transformation of n-Decane on PtHY Catalysts, J. Catal. 162, 2, 179-189. [CrossRef] [Google Scholar]
  • Lawson K.H., Jothimurugesan K., Espinoza R.L. (2006) WO 2006/001912A2 patent, assigned to Conocophillips Company, “Catalyst for hydroprocessing of Fischer-Tropsch products”. [Google Scholar]
  • Benazzi E.,Leite L.,Marchal-George N.,Toulhoat H.,Raybaud P. (2003) New insights into parameters controlling the selectivity in hydrocracking reactions, J. Catal. 217, 2, 376-387. [CrossRef] [Google Scholar]
  • Toulhoat H.,Raybaud P.,Benazzi E. (2004) Effect of confinement on the selectivity of hydrocracking, J. Catal. 221, 2, 500-509. [Google Scholar]
  • Maxwell I.E., Minderhoud J.K., Stork W.H.J., Van Veen J.A.R. (1997) Hydrocracking and Catalytic Dewaxing, in Handbook of Heterogeneous Catalysis, Vol. 4, Ertl G., Knözinger H., Weitkamp J. (eds.), Wiley-VCH, Weinheim. [Google Scholar]
  • MunozArroyo J.M.,Martens G.G.,Froment G.F.,Marin G.B.,Jacobs P.A.,Martens J.A. (2000) Hydrocracking and isomerization of n-paraffin mixtures and a hydrotreated gasoil on Pt/ZSM-22: confirmation of pore mouth and key–lock catalysis in liquid phase, Appl. Catal. A: Gen. 192, 1, 9-22. [CrossRef] [Google Scholar]
  • Calemma V.,Peratello S.,Perego C. (2000) Hydroisomerization and hydrocracking of long chain n-alkanes on Pt/amorphous SiO2–Al2O3 catalyst, Appl. Catal. A: Gen. 190, 207-218. [CrossRef] [Google Scholar]
  • Leckel D.,Liwanga-Ehumbu M. (2006) Diesel-Selective Hydrocracking of an Iron-Based Fischer-Tropsch Wax Fraction (C15-C45) Using a MoO3-Modified Noble Metal Catalyst, Energ. Fuel. 20, 2330-2336. [CrossRef] [Google Scholar]
  • Leckel D. (2007) Noble Metal Wax Hydrocracking Catalysts Supported on High-Siliceous Alumina, Ind. Eng. Chem. Res. 46, 3505-3512. [CrossRef] [Google Scholar]
  • Zhang S.,Zhang Y.,Tierney J.W.,Wender I. (2001) Anionmodified zirconia: effect of metal promotion and hydrogen reduction on hydroisomerization of n-hexadecane and Fischer-Tropsch waxes, Fuel Process. Technol. 69, 59-71. [CrossRef] [Google Scholar]
  • Zhou Z.,Zhang Y.,Tierney J.W.,Wender I. (2003) Hybrid zirconia catalysts for conversion of Fischer-Tropsch waxy products to transportation fuels, Fuel Process. Technol. 83, 67-80. [CrossRef] [Google Scholar]
  • Seki H.,Aoki N.,Ikeda M. (2004) Development of wax hydrocracking catalysts with microcrystalline zeolite, Abstracts Papers Am. Chem. Soc. 226, U252. [Google Scholar]
  • Aoki N., Seki H., Ikeda M., Higashi,Waku T. (2004) Hybrid catalysts with microcrystalline zeolite and silica-alumina for wax hydrocracking, Abstracts Papers Am. Chem. Soc. 228, U669. [Google Scholar]
  • Liu Y.,Hanaoka T.,Murata K.,Okabe K.,Inaba M.,Takahara I.,Sakanishi K. (2007) Hydrocracking of Fischer-Tropsch Wax to Diesel-range hydrocarbons over Bifunctional Catalysts Containing Pt and Polyoxocation-pillared Montmorillonite, Chem. Lett. 36, 12, 1470-1471. [CrossRef] [Google Scholar]
  • Collins J.P., FontFreide J.J.H.M.,Nay B. (2006) A History of Fischer-Tropsch Wax Upgrading at BP – from Catalyst Screening Studies to Full Scale Demonstration in Alaska, J. Nat. Gas Chem. 15, 1-10. [CrossRef] [Google Scholar]
  • Scherzer J., Gruia A. (1996) Correlation between Catalyst Composition and Catalyst Performance, in Hydrocracking Science and Technology, Marcel Dekker, Inc., New York Basel. [Google Scholar]
  • Sakoda H., Konno H. (2005) EP 1 547 683 A1, assigned to Nippon Oil Corporation, “Hydrocracking catalyst and process for production of liquid hydrocarbons”. [Google Scholar]
  • Marion M.C.,Bertoncini F.,Hugues F.,Forestiere A. (2006) Comprehensive characterization of products from cobalt catalyzed Fischer-Tropsch reaction, DGMK Tagungsbericht 4, 117-126. [Google Scholar]
  • Leckel D. (2007) Selectivity Effect of Oxygenates in Hydrocracking of Fischer-Tropsch Waxes, Energ. Fuel. 21, 662-667. [CrossRef] [Google Scholar]
  • Eilers J., Posthuma S.A. (1997) EP 0 583 836 B1, assigned to Shell Internationale Research Maatschappij B.V., “Process for the preparation of hydrocarbon fuels”. [Google Scholar]
  • Tomlinson H.L., Havlik P.Z., Clingan M.D. (2004) EP 1 449 906 A1 patent, assigned to Syntroleum Corporation, “Integrated Fischer-Tropsch process with improved alcohol processing capability”. [Google Scholar]
  • Marcilly C. (2003) Le déparaffinage catalytique, in Catalyse acido-basique, application au raffinage et à la pétrochimie, Technip, Paris. [Google Scholar]
  • Martens J.A.,Jacobs P.A. (2001) Introduction to acid catalysis with zeolites in hydrocarbon reactions, Stud. Surf. Sci. Catal. 137, 633-669. [CrossRef] [Google Scholar]
  • Weisz P.B.,Frilette V.J. (1960) Intracrystalline and molecular-shape-selective catalysis by zeolite salts, J. Phys. Chem. 64, 3, 382. [CrossRef] [Google Scholar]
  • Csicsery S.M. (1984) Shape-selective catalysis in zeolites, Zeolites 4, 3, 202-213. [CrossRef] [Google Scholar]
  • Derouane E.G. (1984) Molecular shape-selective catalysis in zeolites - selected topics, Stud. Surf. Sci. 19, 1-17. [Google Scholar]
  • Miller S.J. (1994) Studies on Wax Isomerization for Lubes and Fuels, Stud. Surf. Sci. Catal. 84C, 2319-2326. [CrossRef] [Google Scholar]
  • Mériaudeau P., VuTuan A.,Nghiem V.T.,Naccache C. (1997) SAPO-11, SAPO-31, and SAPO-41 Molecular Sieves: Synthesis, Characterization, and Catalytic Properties inn-Octane Hydroisomerization, J. Catal. 169, 1, 55-66. [CrossRef] [Google Scholar]
  • Martens J.A.,Jacobs P.A. (1986) The potential and limitations of the n-decane hydroconversion as a test reaction for characterization of the void space of molecular sieve zeolites, Zeolites 6, 5, 334-348. [CrossRef] [Google Scholar]
  • Ernst S.,Weitkamp J.,Martens J.A.,Jacobs P.A. (1989) Synthesis and shape-selective properties of ZSM-22, Appl. Catal. 48, 1, 137-148. [CrossRef] [Google Scholar]
  • Claude M.C.,Martens J.A. (2000) Monomethyl-Branching of Long n-Alkanes in the Range from Decane to Tetracosane on Pt/H-ZSM-22 Bifunctional Catalyst, J. Catal. 190, 1, 39-48. [CrossRef] [Google Scholar]
  • Claude M.C.,Vanbutsele G.,Martens J.A. (2001) Dimethyl Branching of Long n-Alkanes in the Range from Decane to Tetracosane on Pt/H–ZSM-22 Bifunctional Catalyst, J. Catal. 203, 1, 213-231. [CrossRef] [Google Scholar]
  • Kokotailo G.T.,Lawson S.L.,Olson D.H.,Meier W.M. (1978) Structure of synthetic zeolite ZSM-5, Nature 272, 437-438. [CrossRef] [Google Scholar]
  • Parton R.,Uyttehoeven L.,Martens J.A.,Jacobs P.A.,Froment G.F. (1991) Synergism of ZSM-22 and Y zeolites in the bifunctional conversion of n-alkanes, Appl. Catal. 76, 1, 131-142. [CrossRef] [Google Scholar]
  • Soualah A.,Lemberton J.L.,Pinard L.,Chater M.,Magnoux P.,Moljord K. (2008) Hydroisomerization of long-chain n-alkanes on bifunctional Pt/zeolite catalysts: Effect of the zeolite structure on the product selectivity and on the reaction mechanism, Appl. Catal. A: Gen. 336, 23-28. [Google Scholar]
  • Martens J.A.,Parton R.,Uytterhoeven L.,Jacobs P.A.,Froment G.F. (1991) Selective conversion of decane into branched isomers: A comparison of platinum/ZSM-22, platinum/ZSM-5 and platinum/USY zeolite catalysts, Appl. Catal. 76, 1, 95-116. [CrossRef] [Google Scholar]
  • Denayer J.F.,Baron G.V.,Vanbutsele G.,Jacobs P.A.,Martens J.A. (1999) Modeling of Adsorption and Bifunctional Conversion of n-Alkanes on Pt/H-ZSM-22 Zeolite Catalysts, Chem. Eng. Sci. 54, 15-16, 3553-3561. [CrossRef] [Google Scholar]
  • Degnan T.F., Angevine P.J. (2002) WO02088279 A1 patent, assigned to Exxonmobil Research & Engineering Company, “Process for isomerization dewaxing of hydrocarbon streams”. [Google Scholar]
  • Harris T.V., Reynolds R.N., Vogel R.F., Santilli D.S. (2000) US6,051,129 patent, assigned to Chevron U.S.A. Inc., “Process for reducing haze point in bright stock”. [Google Scholar]
  • Hastoy G.,Guillon E.,Martens J.A. (2005) Synergetic effects in intimate mixtures of Pt/ZSM-48 and Pt/ZSM-22 zeolites in bifunctional catalytic chain branching of n-alkanes, Stud. Surf. Sci. Catal. 158, 2, 1359-1366. [CrossRef] [Google Scholar]
  • Venuto P.B. (1977) Aromatic reactions over molecular sieve catalysts: a mechanistic review, USA Catal. Org. Synth., Conf., 6th, pp. 67-93. [Google Scholar]
  • Claude M.C. (1999) Isomérisation des paraffines longues par des zéolithes à pores moyens selon les mécanismes ouverture de pore et clé serrure, PhD Thesis, Université Paris VI. [Google Scholar]
  • Maesen T.L.M.,Schenk M.,Vlugt T.J.H., de Jonge J.P.,Smit B. (1999) The Shape Selectivity of Paraffin Hydroconversion on TON-, MTT-, and AEL-Type Sieves, J. Catal. 188, 2, 403-412. [CrossRef] [Google Scholar]
  • Deldari H. (2005) Suitable catalysts for hydroisomerization of long-chain normal paraffins, Appl. Catal. A: Gen. 293, 1-10. [Google Scholar]
  • Jacobs P.A.,Martens J.A. (1987) a family of zeolites with disordered ferrierite-type structure, Stud. Surf. Sci. Catal. 33, 275-295. [CrossRef] [Google Scholar]
  • Schlenker J.L.,Rohrbaugh W.J.,Chu P.,Valyocsik E.W.,Kokotailo G.T. (1985) The framework topology of ZSM-48: A high silica zeolite, Zeolites 5, 6, 355-358. [CrossRef] [Google Scholar]
  • Lobo R.F., van Koningsveld H. (2002) New Description of the Disorder in Zeolite ZSM-48, J. Am. Chem. Soc. 124, 44, 13222-13230. [CrossRef] [PubMed] [Google Scholar]
  • Degnan T.F., Valyocsik E.W. (1991) US5,075,269 patent, assigned to Mobil Oil “Production of high viscosity index lubricating oil”. [Google Scholar]
  • Lucien J., Dutot G. (1990) US4,906,350 patent, assigned to Shell Oil “Process for the preparation of lubricating base oil”. [Google Scholar]
  • Sastre G.,Chica A.,Corma A. (2000) On the Mechanism of Alkane Isomerization (Isodewaxing) with Unidirectional 10- Member Ring Zeolites. A Molecular Dynamics and Catalytic Study, J. Catal. 195, 2, 227-236. [CrossRef] [Google Scholar]
  • Nghiem V.T.,Sapaly G.,Mériaudeau P.,Naccache C. (2000) Monodimensional tubular medium pore molecular sieves for selective hydroisomerization of long chain alkanes: n-octane reaction on ZSM and SAPO type catalysts, Top. Catal. 14, 1-4, 131-138. [CrossRef] [Google Scholar]
  • Mériaudeau P.,Tuan V.A.,Nghiem V.T.,Sapaly G.,Naccache C. (1999) Comparative Evaluation of the Catalytic Properties of SAPO-31 and ZSM-48 for the Hydroisomerization of n-Octane: Effect of the Acidity, J. Catal. 185, 2, 435-444. [CrossRef] [Google Scholar]
  • Marosi L., Schwarzmann M., Stabenow J. (1981) EPA 0046504 A1 patent, assigned to BASF Aktiengesellschaft, “Kristalliner Metallsilikatzeolith ZBM-30 und Verfahren zu seiner Herstellung”. [Google Scholar]
  • Casci J.L., Lowe B.M., Wittham T.V. (1992) US5,098,685 patent, assigned to Imperial Chemical Industries PLC, “Zeolite EU-2”. [Google Scholar]
  • Araya A.,Lowe B.M. (1984) Zeolite synthesis in the NH2(CH2)6NH2–Al2O3–SiO2–H2O system at 180°C, J. Catal. 85, 1, 135-142. [CrossRef] [Google Scholar]
  • Jacobs P.A.,Martens J.A. (1987) Part I Selected recipes for the synthesis of high silica zeolites, Stud. Surf. Sci. Catal. 33, 1-44. [Google Scholar]
  • Kennedy C.L., Rollmann L.D., Schlenker J.L. (1999) US5,961,951 patent, assigned to Mobil Oil Corporation, “Synthesis ZSM-48”. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.