Dossier: IFP International Workshop "Microbiology of Hydrocarbons: State of the Art and Perspectives"
Open Access
Issue
Oil & Gas Science and Technology - Rev. IFP
Volume 58, Number 4, July-August 2003
Dossier: IFP International Workshop "Microbiology of Hydrocarbons: State of the Art and Perspectives"
Page(s) 481 - 488
DOI https://doi.org/10.2516/ogst:2003031
Published online 01 December 2006
  • Bouchez, M.,Blanchet, D.,Haessler, F., and Vandecasteele, J.P. (1996) Les hydrocarbures aromatiques polycycliques dans l’environnement. Première partie : propriétés, origines, devenir. Rev. Instit. Franç. Pétr., 51, 3, 407-419. [Google Scholar]
  • Cerniglia, C.E. (1992) Biodegradation of Polycyclic Aromatic Hydrocarbons. Biodegradation, 3, 351-368. [Google Scholar]
  • Kanaly, R.A. and Harayama, S. (2000) Biodegradation of High-Molecular-Weight Polycyclic Aromatic Hydrocarbons by Bacteria. J. Bacteriol., 182, 2059-2067. [Google Scholar]
  • Chung, N. and Alexander, M. (1998) Differences in Sequestration and Bioavailability of Organic Compounds Aged in Dissimilar Soils. Environ. Sci. Technol., 32, 855-860. [Google Scholar]
  • Reid, B.J.,Jones, K.C. and Semple, K.T. (2000) Bioavailability of Persistant Organic Pollutants in Soils and sediments - A Perspective on Mechanisms, Consequences and Assessment. Environ. Poll., 108, 103-112. [CrossRef] [PubMed] [Google Scholar]
  • Karickhoff, S.W.,Brown, D.S. and Scott, T.A. (1979) Sorption of Hydrophobic Pollutants on Natural Sediments. Water Res., 13, 241-248. [Google Scholar]
  • Gaboriau, H. and Saada, A. (2001) Influence of Heavy Organic Pollutants of Anthropic Origin on PAH Retention by Kaolinite. Chemosphere, 44, 1633-1639. [CrossRef] [PubMed] [Google Scholar]
  • Alexander, M. (2000) Aging, Bioavailability, and Overestimation of Risk from Environmental Pollutants. Environ. Sci. Technol., 34, 4259-4265. [Google Scholar]
  • Gaboriau, H., Conil, P. and Saada, A. (1999) Pilot-Scale Study for the Treatment of Hydrocarbon Contaminated Sludge. Proceedings Rewas’99, San Sebastian, 5-9 September, 183-192. [Google Scholar]
  • Bouchez, M.,Blanchet, D. and Vandecasteele, J.P. (1997) An Interfacial Uptake Mechanism for the Degradation of Pyrene by a Rhodococcus strain. Microbiology, 143, 1087-1093. [Google Scholar]
  • Boldrin, B.,Tiehm, A. and Fritzsche, C. (1993) Degradation of Phenanthrene, Fluorene, Fluoranthene, and Pyrene by a Mycobacterium sp. Appl. Environ. Microbiol., 59, 1927-1930. [PubMed] [Google Scholar]
  • Weissenfels, W.D., Beyer, M.and Klein, J. (1990) Degradation of Phenanthrene, Fluorene and Fluoranthene by Pure Bacterial Cultures. Appl. Environ. Microbiol., 32, 479-484. [Google Scholar]
  • Ortega-Calvo, J.J. and Saiz-Jimenez, C. (1998). Effect of Humic Fractions and Clay on Biodegradation of Phenanthrene by a Pseudomonas fluorescens Strain Isolated from Soil. Appl. Environ. Microbiol., 64, 3123-3126. [PubMed] [Google Scholar]
  • Manilal, V.B. and Alexander, M. (1991) Factors Affecting the Microbial Degradation of Phenanthrene in Soil. Appl. Microbiol. Biotechnol., 35, 401-405. [Google Scholar]
  • Tongpim, S. and Pickard, M.A. (1999) Cometabolic Oxidation of Phenanthrene to Phenanthrene trans-9,10- dihydrodiol by Mycobacterium Strain S1 Growing on Anthracene in the Presence of Phenanthrene. Can. J. Microbiol., 45, 369-376. [CrossRef] [PubMed] [Google Scholar]
  • Menn, F.M.,Applegate, B.M. and Sayler, G.S. (1993) NAH Plasmid-Mediated Catabolism of Anthracene and Phenanthrene to Naphtoic Acids. Appl. Environ. Microbiol., 59, 1938-1942. [PubMed] [Google Scholar]
  • Alexander, M. (1977) Introduction to Soil Microbiology, 2nd edition. John Wiley & Sons Inc. [Google Scholar]
  • Keith, L.H. and Telliard, W.A. (1979) Priority Pollutants. 1. A Perspective Review. Environ. Sci. Technol., 13, 416-423. [Google Scholar]
  • Bidaud, C. (1998) Biodégradation des hydrocarbures aromatiques polycycliques. Approche microbiologique et application au traitement d'un sol pollué.Thèse ENSMSE/INPG. [Google Scholar]
  • Kiyohara, H.,Nagao, K. and Yana, K. (1982) Rapid Screen for Bacteria Degrading Water-Insoluble, Solid Hydrocarbons on Agar Plates. Appl. Environ. Microbiol., 43, 454-457. [PubMed] [Google Scholar]
  • Huang, W.,Yu, H. and Weber, W.J. Jr. (1998) Hysteresis in the Sorption and Desorption of Hydrophobic Organic Contaminants by Soils and Sediments. 1. A Comparative Analysis of Experimental Protocols. J. Contam. Hydrol., 31, 129-148. [CrossRef] [Google Scholar]
  • WeberJr, W.J.,Huang, W. and Yu, H. (1998) Hysteresis in the Sorption and Desorption of Hydrophobic Organic Contaminants by Soils and Sediments. 2. Effects of Soil Organic Matter Heterogeneity. J. Contam. Hydrol., 31, 149-165. [CrossRef] [Google Scholar]
  • Talley, J.W., Ghosh, U., Tucker, S.G., Furey, J.S. and Luthy R.G. (2002) Particle-scale Understanding of the Bioavailability of PAHs in Sediment. Environ. Sci. Technol., 36, 477-483. [CrossRef] [PubMed] [Google Scholar]
  • White, J.C.,Hunter, M.,Nam, K.,Pignatello, J.J. and Alexander, M. (1999) Correlation between Biological and Physical Availabilities of Phenanthrene in Soils and Soil Humin in Aging Experiments. Environ. Toxicol. Chem., 18, 1720-1727. [CrossRef] [Google Scholar]
  • Hatzinger, P.B. and Alexander, M. (1995) Effect of Aging of Chemicals in Soil on their Biodegradability and Extractibility. Environ. Sci. Technol., 29, 537-545. [CrossRef] [PubMed] [Google Scholar]
  • Hwang, S. and Cutright, T.J. (2002) Biodegradability of Aged Pyrene and Phenanthrene in a Natural Soil. Chemosphere, 47, 891-899. [CrossRef] [PubMed] [Google Scholar]
  • Boldrin, B.,Tiehm, A. and Fritzsche, C. (1993) Degradation of Phenanthrene, Fluorene, Fluoranthene, and Pyrene by a Mycobacterium sp. Appl. Environ. Microbiol., 59, 1927-1930. [PubMed] [Google Scholar]
  • Providenti, M.A., Greer, C.W., Lee, H. and Trevors, J.T. (1995) Phenanthrene Mineralization by Pseudomonas sp. UG14. World J. Microbiol. Biotechnol., 11, 271-279. [Google Scholar]
  • Moody, J.D.,Freeman, J.P.,Doerge, D.R. and Cerniglia, C.E. (2001) Degradation of Phenanthrene and Anthracene by Cell Suspensions of Mycobacterium sp. Strain PYR-1. Appl. Environ. Microbiol., 67, 1476-1483. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.