Dossier: Geomechanics in Reservoir Simulation - Rencontres Scientifiques IFP, December. 2001-Rueil-Malmaison - France
Open Access
Issue
Oil & Gas Science and Technology - Rev. IFP
Volume 57, Number 5, September-October 2002
Dossier: Geomechanics in Reservoir Simulation - Rencontres Scientifiques IFP, December. 2001-Rueil-Malmaison - France
Page(s) 591 - 599
DOI https://doi.org/10.2516/ogst:2002040
Published online 01 December 2006
  • Antonellini, M. and Aydin, A. (1995) Effect of Faulting on Fluid Flow in Porous Sandstones: Geometry and Spatial Distribution. Am Assoc. Petrol. Geol., 79, 642-671. [Google Scholar]
  • Bastawros, A.F.,Bart-Smith, H. and Evans, A.G. (2000) Experimental Analysis of Deformation Mechanisms in a Closed- Cell Aluminum Alloy Foam. J. Mech. Phys. Solids, 48, 301-322. [CrossRef] [Google Scholar]
  • Besuelle, P. (2001) Compacting and Dilating Shear Bands in Porous Rock: Theoretical and Experimental Conditions. J. Geophys. Res., 106, 13435-13442. [CrossRef] [Google Scholar]
  • Bessinger, B.A.,Liu, Z.,Cook, N.G.W. and Myer, L.R. (1997) A New Fracturing Mechanism for Granular Media. Geophys. Res. Lett., 24, 2605-2608. [CrossRef] [Google Scholar]
  • DiGiovanni, A.J., Fredrich, T., Holcomb D.J. and Olsson, W.A. (2000) Micromechanics of Compaction in an Analogue Reservoir Sandstone. In Pacific Rocks 2000, Girard, J., Liebman, M., Breeds, C., Doe, T. (eds.), Balkema, Rotterdam. [Google Scholar]
  • Dimaggio, F.L. and Sandler, I.S. (1971) Material Model for Granular Soils. J. Engn. Mech., ASCE, 97, 935-950. [Google Scholar]
  • Fossum, A.F. and Fredrich, J. T. (2000) Cap Plasticity Models and Compactive and Dilatant Pre-Failure Deformations. In Pacific Rocks 2000, Girard, J., Liebman, M., Breeds, C., Doe, T. (eds.), Balkema, Rotterdam. [Google Scholar]
  • Haimson, B.C. and Song, I. (1998) Borehole Breakouts in Berea Sandstone: Two Porosity-Dependent Distinct Shapes and Mechanisms of Formation. In Rock Mechanics in Petroleum Engineering, Soc. Petrol. Eng., Richardson. [Google Scholar]
  • Haimson, B.C. (2001) Fracture-Like Borehole Breakouts in High- Porosity Sandstone: Are they Caused by Compaction Bands? Phys. Chem. Eart (A), 26, 15-20. [CrossRef] [Google Scholar]
  • Holcomb, D.J. and Olsson, W.A. (2001) Compaction Localization and Fluid Flow. Submitted to J. Geophys. Res. [Google Scholar]
  • Issen, K.A. and Rudnicki, J.W. (2000) Conditions for Compaction Bands in Porous Rock. J. Geophys. Res., 105, 21529-21536. [CrossRef] [Google Scholar]
  • Issen, K.A. and Rudnicki, J.W. (2001) Theory of Compaction Bands in Porous Rock. Phys. Chem. Earth (A), 26, 95-100. [CrossRef] [Google Scholar]
  • Issen, K.A., (2001) The Influence of Constitutive Models on Localization Conditions for Porous Rock. Engn. Frac. Mech., to appear. [Google Scholar]
  • Klein, E., Baud, P., Reuschle, T. and Wong, T.f. (2001) Mechanical Behaviour and Failure Mode of Bentheim Sandstone under Triaxial Compression. Phys. Chem. Earth (A), 26, 21-25. [Google Scholar]
  • Kovacich, J.R. and Haimson, B.C. (2000) Factors Affecting Borehole Breakout Dimensions, and the Potential for Sand Production in High Porosity Berea Sandstone. In Pacific Rocks 2000, Girard, J., Liebman, M., Breeds, C., and Doe, T. (eds.), 1153-1160, Balkema, Rotterdam. [Google Scholar]
  • Lajtai, E Z. (1974) Brittle Fracture in Compression. Int. J. Fract., 10, 525-536. [Google Scholar]
  • Mollema, P.N. and Antonellini, M.A. (1996) Compaction Bands: A Structural analog for anti-mode I cracks in aeolian sandstone. Tectonophysics, 267, 209-228. [CrossRef] [Google Scholar]
  • Olsson, W.A. (1999) Theoretical and Experimental Investigation of Compaction Bands in Porous Rock. J. Geophys. Res., 104, 7219-7228. [CrossRef] [Google Scholar]
  • Olsson, W.A. and Holcomb, D.J. (2000) Compaction Localization in Porous Rock. Geophys. Res. Letters, 27, 3537-3540. [CrossRef] [MathSciNet] [Google Scholar]
  • Olsson, W.A. (2001) Quasistatic Propagation of Compaction Fronts in Porous Rock. Mech. Mat., 33, 659-668. [CrossRef] [Google Scholar]
  • Ostermeier, R.M. (2001) Compaction Effects on Porosity and Permeability: Deepwater Gulf of Mexico Turbidites. J. Pet. Tech., February, 68-74. [Google Scholar]
  • Ottosen, N.S. and Runesson, K. (1991) Properties of Discontinuous Bifurcation Solutions in Elasto-Plasticity. Int. J. Solids Struct., 27, 401-421. [CrossRef] [MathSciNet] [Google Scholar]
  • Papka, S.D. and Kyriakides, S. (1998) In-Plane Crushing of a Polycarbonate Honeycomb. Int. J. Solids Struct., 35, 239-267. [CrossRef] [Google Scholar]
  • Park, C. and Nutt, S.R. (2001) Anisotropy and Strain Localization in Steel Foam. Mat. Sci. Eng., A299, 68-74. [CrossRef] [Google Scholar]
  • Perrin, G. and LeBlond, J.B. (1993) Rudnicki and Rice’s Analysis of Strain Localization Revisited. J. Appl. Mech., 60, 842-846. [CrossRef] [Google Scholar]
  • Rice, J.R. (1976) The Localization of Plastic Deformation. In Proc. 14th IUTAM Congress, Koiter, W. (ed.), North Holland. [Google Scholar]
  • Rudnicki, J.W. (2002) Conditions For Compaction and Shear Bands in a Transversely Isotropic Material. Int. J. Solids Struct., 39, 3741-3756. [CrossRef] [Google Scholar]
  • Rudnicki, J.W. and Rice, J.R. (1975) Conditions for the Localization of Deformation in Pressure-Sensitive Dilatant Materials. J. Mech. Phys. Solids, 23, 371-394. [CrossRef] [Google Scholar]
  • Wong, T.f.,Baud, P. and Klein, E. (2001) Localized Failure Modes in a Compactant Porous Rock. Geophys. Res. Lett., 28, 2521-2524. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.