Open Access
Issue
Oil & Gas Science and Technology - Rev. IFP
Volume 56, Number 4, July-August 2001
Page(s) 373 - 388
DOI https://doi.org/10.2516/ogst:2001033
Published online 01 December 2006
  • Belsley, D. (1984) Demeaning Conditioning Diagnostic Through Centering. The American Statistician, 38, 2, 73-93. [Google Scholar]
  • Belsley, D., Kuh, E. et Welsch, R. (1980) Regression Diagnostics, Identifying Influential Data and Sources of Collinearity, John Wiley & Sons, New York. [Google Scholar]
  • Booth, J.G. et Sarkar, S. (1998) Monte-Carlo Approximation of Bootstrap Variances. The American Statistician, 52, 4, 354-357. [Google Scholar]
  • Breiman, L. (1992) The Little Bootstrap and Other Methods for Dimensionality Selection in Regression: X-Fixed Prediction Error. Journal of the American Statistical Association, 87, 738-754. [CrossRef] [MathSciNet] [Google Scholar]
  • Efron, B. (1979) Bootstrap Methods: Another Look at the Jacknife. Annals of Statistics, 7, 1-26. [CrossRef] [MathSciNet] [Google Scholar]
  • Efron, B. et Tibshyrani, R.J. (1993) An Introduction to the Bootstrap, Chapman and Hall, New York. [Google Scholar]
  • Erkel-Rousse, H. (1995) Détection de la multicolinéarité dans un modèle linéaire ordinaire : quelques éléments pour un usage averti des indicateurs de Belsley, Kuh et Welsch. Revue de statistique appliquée, 18, 4, 19-42. [Google Scholar]
  • Flachaire, E. (1998) Les méthodes du bootstrap et l’inférence robuste à l’hétéroscédasticité,Thèse, université de la Méditerranée, GREQAM. [Google Scholar]
  • Forsythe, G.E., Malcolm, M.A. et Moler, C.B. (1977) Computer Methods for Mathematical Computations, Prentice-Hall. [Google Scholar]
  • Freedman, D.A. (1981) Bootstrapping Regression Models. Annals of Statistics, 9, 1218-1228. [CrossRef] [MathSciNet] [Google Scholar]
  • Hall, P. (1992) The Bootstrap and Edgeworth Expansion, Springer Verlag, New York. [Google Scholar]
  • Horowitz, J.L. (1997) Bootstrap Methods in Econometrics: Theory and Numerical Performance, Advances in Economics and Econometrics: Theory and Application, 3, Cambridge University Press, 188-222. [Google Scholar]
  • Jeong, J. et Maddala, G.S. (1993) A Perspective on Application of Bootstrap Methods in Econometrics, in Handbook of Statistics, 11, North-Holland. [Google Scholar]
  • Juan, S. (1999) Les modélisations économétriques d’estimation de coût dans l’industrie automobile : l’apport des techniques de bootstrap. Thèse, ENSPM-Université de Bourgogne. [Google Scholar]
  • Lantz, F. (1983) Mise en œuvre de la régression linéaire : calcul et stabilité de la matrice (X'X) inverse, Les Cahiers du 3e cycle économétrie, université de Paris X, 34-47. [Google Scholar]
  • McCullough, B.D. (1996) Estimating Forecast Intervals When the Exogenous Variable is Stochastic. Journal of Forecasting, 15, 293-304. [CrossRef] [Google Scholar]
  • McCullough, B.D. et Vinod, H. (1993) Implementing the Single Bootstrap: Some Computational Considerations. Computational Economics, 6, 1-15. [CrossRef] [Google Scholar]
  • Seaks, T. (1972) Computer Algorithms—Syminv: An Algorithm for the Inversion of a Positive Definite Matrix by the Cholesky Decomposition. Econometrica, 40, 5. [CrossRef] [Google Scholar]
  • Simar, L. (1992) Estimating Efficiencies from Frontier Models with Panel Data: A Comparison of Parametric, Non Parametric and Semi-Parametric Methods with Bootstrapping. The Journal of Productivity Analysis, 3, 171-203. [CrossRef] [Google Scholar]
  • Stine, R.A. (1985) Bootstrap Prediction Intervals for Regression. Journal of The American Statistical Association, 80, 1026-1031. [CrossRef] [MathSciNet] [Google Scholar]
  • Veall, M.R. (1998) Applications of the Bootstrap, in Handbook of Applied Economic Statistics, 155, Aman U., Giles D.E.A. [Google Scholar]
  • Verboven, F. (1996) International Price Discrimination in the European Car Market. Rand Journal of Economics, 27, 240-268. [CrossRef] [Google Scholar]
  • Vinod, H. (1993) Bootstrap Methods: Applications in Econometrics, in Handbook of Statistics, 11, North-Holland, 629-661. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.