Regular Article
Flow field and noise characteristics of manifold in natural gas transportation station
1
Petroleum Engineering School, Southwest Petroleum University, Chengdu 610500, China
2
PetroChina Southwest Oil & Gasfield Company, Chengdu 610000, China
3
PetroChina West Pipeline Company, Urumchi 830001, China
* Corresponding author: enbin.liu@swpu.edu.cn
Received:
3
February
2019
Accepted:
12
June
2019
Manifolds play a role of pressure balance, buffering and rectification for different branch pipelines, the flow noise of manifolds has been a serious problem all this time in natural gas transmission station. By changing the number of outlet pipes of manifolds and the different positions of intake pipes, the distribution of the Sound Pressure Level (SPL) of the manifold flow noise is analyzed based on the Ffowcs Williams-Hawkings (FW-H) acoustic analogy theory and Large Eddy Simulations (LESs). The three-dimensional simulation analysis of the flow field shows that pressure pulsation is the mainly source of manifold noise, as the number of outlet pipe increases, the SPLs of fluid dynamic noise at the end of inlet pipes are significantly reduced by about 10 dB on average, when the inlet and outlet piping are oppositely connected, the SPL is 2 dB~3 dB lower than that in staggered connections. An expansion-chamber muffler is designed with the analysis of its noise reduction effect, the results show that after the muffler is installed, the noise reduction in the low-frequency ranges reaches up to 37.5 dB, which controls the maximum noise to around 82 dB.
© Z. Su et al., published by IFP Energies nouvelles, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.