Modelling the Limiting Envelopes of Rocks in the Octahedral Plane
Modélisation des enveloppes limites des roches dans le plan octaédrique
Department of Mining Engineering, Faculté Polytechnique de Mons (The Faculty of Engineering, Mons), 53, rue du Joncquois, 7000 Mons - Belgium
Corresponding authors: fanny.descamps@fpms.ac.be jean-pierre.tshibangu@fpms.ac.be
The influence of the intermediate principal stress on the behaviour and the mechanical properties of rocks is now widely admitted [1-9]. In this study, we take all the three components of the stress state into account for building and modelling limiting envelopes. Therefore, a particularly convenient method for representing the results is the octahedral plane (also called deviatoric plane or π-plane). In this paper, we first present the automated method we developed for building limiting envelopes from a set of polyaxial (true triaxial) test data. Those developments are then applied for building the failure envelope of the Soignies limestone in various octahedral planes. Three shapes of envelopes are emphasized: triangular, hexagonal and rounded envelopes. The second part of the research deals with the modelling of the failure envelopes. Since the 19th Century, lots of strength criteria have been developed in order to model the materials intrinsic response to loads and to identify the failure behaviour at different stress states. Among theses theories, we focussed on criteria such as Mohr-Coulomb, Drucker-Prager, Griffith-Murrel and Lade [1,10-12], for which the octahedral representation looks like our limiting envelopes. In the future, the modelling job could be extended to other criteria, particularly for taking into account the variability of octahedral shapes.
Résumé
L'influence de la contrainte principale intermédiaire sur le comportement et les propriétés mécaniques des roches est maintenant largement admise [1-9]. Dans cette étude, nous prenons en compte les trois composantes principales de l'état de contraintes pour construire les enveloppes limites et les modéliser. A cet effet, le recours au plan octaédrique (aussi appelé plan déviatorique ou plan π) convient particulièrement bien pour représenter les résultats. Dans cet article, nous présentons d'abord la méthode automatisée développée pour la construction des enveloppes limites à partir des résultats d'essais polyaxiaux (véritables triaxiaux). Ces développements sont alors appliqués à la construction de l'enveloppe de rupture du Calcaire de Soignies dans différents plans octaédriques. Trois formes d'enveloppes sont mises en évidence : triangulaires, hexagonales et arrondies. La seconde partie de la recherche concerne la modélisation de ces enveloppes de rupture. Depuis le 19 siècle, beaucoup de critères de résistance ont été développés pour modéliser la réponse de matériaux aux sollicitations et pour identifier le comportement à la rupture sous différents états de contraintes. Parmi ces théories, nous avons retenu les critères de Mohr-Coulomb, Drucker-Prager, Griffith-Murrell et Lade [1, 10-12], dont la représentation octaédrique correspond à la forme des enveloppes limites. Dans des recherches futures, d'autres critères pourraient être envisagés, notamment pour prendre en compte la variabilité des formes octaédriques.
© IFP, 2007