Thermal and Hydrolytic Stability of Dithiophophoric Acids
Stabilité thermique et hydrolytique des acides dithiophosphoriques
1
Bulgarian Academy of Sciences
2
NPO MASMA
The thermal and hydrolytic stability of dibutyl-, diisobutyl- and diisooctyldithiophosphoric acids have been studied in the range of 40-80°C. The reaction progress was followed by the H2S evolution kinetics in volumetric equipment at constant pressure, equal to the barometric one. The kinetic parameters of the process have been determined at various acid water ratios - maximum rates of gas evolution, activation energy and the kinetic order. It has been shown that the hydrolysis proceeds mainly along the sulph-hydrate group of the acid (up to temperatures of 60°C), while at higher temperatures the ester groups and the thion sulphur are attacked too. The thermal stability of dithiophosphoric acids has been studied in the presence of stainless steel, lead and copper plates. It has been shown that stainless steel doesn't affect the process rate, while copper and especially lead increase the gas evolution and decrease the activation energy. A model describing the reaction progress at the interfacial surfaces - organic phase, water and metal surface - has been developed. Based on these data a conclusion is advanced, related to the manifacture technology of antioxidant, anticorrosion and antiwear additives of the zinc dialkyldithiophosphate type. It is pointed out that the neutralization process of dithiophosphoric acids should be carried out in a stainless steel reactor at tempeatures below 70°C.
Résumé
Le présent article s'efforce d'élucider l'influence de l'eau, de la température et des surfaces métalliques sur la stabilité thermique et hydrolytique des acides dibutyl-, diisobutyl- et diisooctyldithiophosphoriques, à la lumière du concept d'interaction.
© IFP, 1993