Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

Large eddy simulation of spray combustion using the spray flamelet/progress variable model: Further extension and validation

Yicun Wang, Changxiao Shao, Tai Jin, Kun Luo and Jianren Fan
Physics of Fluids 35 (10) (2023)
https://doi.org/10.1063/5.0167515

Investigation of the derivation and consistency of the quasi-two-dimensional flamelet models for non-premixed flames

Panlong Yu, Ryoichi Kurose and Hiroaki Watanabe
Physics of Fluids 35 (1) (2023)
https://doi.org/10.1063/5.0134942

A simplified two-mixture-fraction-based flamelet modelling and its validation on a non-premixed staged combustion system

Panlong Yu and Hiroaki Watanabe
Combustion Theory and Modelling 27 (1) 37 (2023)
https://doi.org/10.1080/13647830.2022.2144460

Study on the Combustion Mechanism of Diesel/Hydrogen Dual Fuel and the Influence of Pilot Injection and Main Injection

Longlong Xu, Haochuan Dong, Shaohua Liu, Lizhong Shen and Yuhua Bi
Processes 11 (7) 2122 (2023)
https://doi.org/10.3390/pr11072122

Analysis of a Quasi-Two-Dimensional Flamelet Model on a Three-Feed Non-premixed Oxy-Combustion Burner

Panlong Yu, Hiroaki Watanabe, Heinz Pitsch, et al.
Flow, Turbulence and Combustion 108 (1) 303 (2022)
https://doi.org/10.1007/s10494-021-00274-x

OH, PAH, and sooting imaging in piloted liquid-spray flames of diesel and diesel surrogate

Yejun Wang, Ayush Jain, Christian Schweizer and Waruna D. Kulatilaka
Combustion and Flame 231 111479 (2021)
https://doi.org/10.1016/j.combustflame.2021.111479

Implementation of multi-component diesel fuel surrogates and chemical kinetic mechanisms for engine combustion simulations

Prithwish Kundu, Chao Xu, Sibendu Som, et al.
Transportation Engineering 3 100042 (2021)
https://doi.org/10.1016/j.treng.2020.100042

Phenomenological soot modeling with solution mapping optimization of biodiesel-diesel blends in diesel engines

Alumah Arad, Eran Sher and Giora Enden
Thermal Science and Engineering Progress 18 100544 (2020)
https://doi.org/10.1016/j.tsep.2020.100544

Chemical kinetic mechanism for diesel/biodiesel/ethanol surrogates using n-decane/methyl-decanoate/ethanol blends

Dario Alviso, Marina Weyl Costa, Lara Backer, et al.
Journal of the Brazilian Society of Mechanical Sciences and Engineering 42 (2) (2020)
https://doi.org/10.1007/s40430-020-2186-9

Effect of toluene content on the combustion and emissions of large two-stroke marine diesel engine

Xiuxiu Sun, Xingyu Liang, Gequn Shu, Yuesen Wang and Yong Chen
Applied Thermal Engineering 159 113909 (2019)
https://doi.org/10.1016/j.applthermaleng.2019.113909

Experimental Study and a Short Kinetic Model for High-Temperature Oxidation of Methyl Methacrylate

Shanmugasundaram Dakshnamurthy, Denis A. Knyazkov, Artem M. Dmitriev, et al.
Combustion Science and Technology 191 (10) 1789 (2019)
https://doi.org/10.1080/00102202.2018.1535492

Mathematical Modelling of Gas-Phase Complex Reaction Systems: Pyrolysis and Combustion

Perrine Pepiot, Liming Cai and Heinz Pitsch
Computer Aided Chemical Engineering, Mathematical Modelling of Gas-Phase Complex Reaction Systems: Pyrolysis and Combustion 45 799 (2019)
https://doi.org/10.1016/B978-0-444-64087-1.00016-4

Combustion Simulation of a Diesel Engine with Split Injections by Lagrangian Conditional Moment Closure Model

Karam Han, Byungkwan Jang, Getachew Lakew and Kang Y. Huh
Combustion Science and Technology 190 (1) 1 (2018)
https://doi.org/10.1080/00102202.2017.1354854

Synthese, motorische Verbrennung, Emissionen: Chemische Aspekte des Kraftstoffdesigns

Walter Leitner, Jürgen Klankermayer, Stefan Pischinger, Heinz Pitsch and Katharina Kohse‐Höinghaus
Angewandte Chemie 129 (20) 5500 (2017)
https://doi.org/10.1002/ange.201607257

Advanced Biofuels and Beyond: Chemistry Solutions for Propulsion and Production

Walter Leitner, Jürgen Klankermayer, Stefan Pischinger, Heinz Pitsch and Katharina Kohse‐Höinghaus
Angewandte Chemie International Edition 56 (20) 5412 (2017)
https://doi.org/10.1002/anie.201607257

Development of multi-component diesel surrogate fuel models – Part II: Validation of the integrated mechanisms in 0-D kinetic and 2-D CFD spray combustion simulations

Hiew Mun Poon, Kar Mun Pang, Hoon Kiat Ng, Suyin Gan and Jesper Schramm
Fuel 181 120 (2016)
https://doi.org/10.1016/j.fuel.2016.04.114

Development of a Reduced n-Decane/α-Methylnaphthalene/Polycyclic Aromatic Hydrocarbon Mechanism and Its Application for Combustion and Soot Prediction

Liang Qiu, Xiaobei Cheng, Xin Wang, et al.
Energy & Fuels 30 (12) 10875 (2016)
https://doi.org/10.1021/acs.energyfuels.6b02186

Assessment of flamelet versus multi-zone combustion modeling approaches for stratified-charge compression ignition engines

Pinaki Pal, SeungHwan Keum and Hong G Im
International Journal of Engine Research 17 (3) 280 (2016)
https://doi.org/10.1177/1468087415571006

Mixing and scalar dissipation rate statistics in a starting gas jet

N. Soulopoulos, Y. Hardalupas and A. M. K. P. Taylor
Physics of Fluids 27 (12) (2015)
https://doi.org/10.1063/1.4935233

Analysis of the sooting propensity of C-4 and C-5 oxygenates: Comparison of sooting indexes issued from laser-based experiments and group additivity approaches

Romain Lemaire, Denis Lapalme and Patrice Seers
Combustion and Flame 162 (9) 3140 (2015)
https://doi.org/10.1016/j.combustflame.2015.03.018

Systematic Analysis Strategies for the Development of Combustion Models from DNS: A Review

P. Trisjono and H. Pitsch
Flow, Turbulence and Combustion 95 (2-3) 231 (2015)
https://doi.org/10.1007/s10494-015-9645-x

Surrogate fuels for the simulation of diesel engine combustion of novel biofuels

Bruno Kerschgens, Liming Cai, Heinz Pitsch, Andreas Janssen, Markus Jakob and Stefan Pischinger
International Journal of Engine Research 16 (4) 531 (2015)
https://doi.org/10.1177/1468087414534565

Probability density function approach coupled with detailed chemical kinetics for the prediction of knock in turbocharged direct injection spark ignition engines

Dirk Linse, Andreas Kleemann and Christian Hasse
Combustion and Flame 161 (4) 997 (2014)
https://doi.org/10.1016/j.combustflame.2013.10.025

Chemical kinetic study of a novel lignocellulosic biofuel: Di-n-butyl ether oxidation in a laminar flow reactor and flames

Liming Cai, Alena Sudholt, Dong Joon Lee, et al.
Combustion and Flame 161 (3) 798 (2014)
https://doi.org/10.1016/j.combustflame.2013.10.003

Investigating Diesel Engine Performance and Emissions Using CFD

Tarek M. Belal, El Sayed M. Marzouk and Mohsen M. Osman
Energy and Power Engineering 05 (02) 171 (2013)
https://doi.org/10.4236/epe.2013.52017

Thermophysical properties needed for the development of the supercritical diesel combustion technology: Evaluation of diesel fuel surrogate models

Ronghong Lin and Lawrence L. Tavlarides
The Journal of Supercritical Fluids 71 136 (2012)
https://doi.org/10.1016/j.supflu.2012.08.003

Towards cleaner combustion engines through groundbreaking detailed chemical kinetic models

Frédérique Battin-Leclerc, Edward Blurock, Roda Bounaceur, et al.
Chemical Society Reviews 40 (9) 4762 (2011)
https://doi.org/10.1039/c0cs00207k

A New 0D Diesel HCCI Combustion Model Derived from a 3D CFD Approach with Detailed Tabulated Chemistry

A. Dulbecco, F.-A. Lafossas, G. Mauviot and T. J. Poinsot
Oil & Gas Science and Technology - Revue de l'IFP 64 (3) 259 (2009)
https://doi.org/10.2516/ogst/2008051

Experimental comparison of soot formation in turbulent flames of Diesel and surrogate Diesel fuels

R. Lemaire, A. Faccinetto, E. Therssen, et al.
Proceedings of the Combustion Institute 32 (1) 737 (2009)
https://doi.org/10.1016/j.proci.2008.05.019

Experimental investigation of surrogates for jet and diesel fuels

Robert H. Natelson, Matthew S. Kurman, Nicholas P. Cernansky and David L. Miller
Fuel 87 (10-11) 2339 (2008)
https://doi.org/10.1016/j.fuel.2007.11.009

J. T. Farrell, N. P. Cernansky, F. L. Dryer, C. K. Law, D. G. Friend, C. A. Hergart, R. M. McDavid, A. K. Patel, Charles J. Mueller and H. Pitsch
1 (2007)
https://doi.org/10.4271/2007-01-0201

MODELING DIESEL SPRAY IGNITION USING DETAILED CHEMISTRY WITH A PROGRESS VARIABLE APPROACH

HARRY LEHTINIEMI, FABIAN MAUSS, MICHAEL BALTHASAR and INGEMAR MAGNUSSON
Combustion Science and Technology 178 (10-11) 1977 (2006)
https://doi.org/10.1080/00102200600793148

Numerical simulation and laser-based imaging of mixture formation, ignition, and soot formation in a diesel spray

S. Vogel, C. Hasse, J. Gronki, S. Andersson, N. Peters, J. Wolfrum and C. Schulz
Proceedings of the Combustion Institute 30 (2) 2029 (2005)
https://doi.org/10.1016/j.proci.2004.08.202

High-pressure multicomponent liquid sprays: Departure from ideal behaviour

M F Trujillo, D J Torres and P J O'Rourke
International Journal of Engine Research 5 (3) 229 (2004)
https://doi.org/10.1243/1468087041549616

Flamelet modelling of non-premixed turbulent combustion with local extinction and re-ignition

Heinz Pitsch, Chong Cha and Sergei Fedotov
Combustion Theory and Modelling 7 (2) 317 (2003)
https://doi.org/10.1088/1364-7830/7/2/306

Applying the Representative Interactive Flamelet Model to Evaluate the Potential Effect of Wall Heat Transfer on Soot Emissions in a Small-Bore Direct-Injection Diesel Engine

C. Hergart and N. Peters
Journal of Engineering for Gas Turbines and Power 124 (4) 1042 (2002)
https://doi.org/10.1115/1.1473147

Computational fluid dynamics modelling of non-premixed combustion in direct injection diesel engines

H Barths, C Hasse and N Peters
International Journal of Engine Research 1 (3) 249 (2000)
https://doi.org/10.1243/1468087001545164

Simulation of combustion in direct injection diesel engines using a eulerian particle flamelet model

H. Barths, C. Hasse, G. Bikas and N. Peters
Proceedings of the Combustion Institute 28 (1) 1161 (2000)
https://doi.org/10.1016/S0082-0784(00)80326-4