Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme strong>CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

Citations de cet article :

A systematic review of data science and machine learning applications to the oil and gas industry

Zeeshan Tariq, Murtada Saleh Aljawad, Amjed Hasan, Mobeen Murtaza, Emad Mohammed, Ammar El-Husseiny, Sulaiman A. Alarifi, Mohamed Mahmoud and Abdulazeez Abdulraheem
Journal of Petroleum Exploration and Production Technology 11 (12) 4339 (2021)
DOI: 10.1007/s13202-021-01302-2
Voir cet article

Machine Learning Models for Equivalent Circulating Density Prediction from Drilling Data

Hany Gamal, Ahmed Abdelaal and Salaheldin Elkatatny
ACS Omega 6 (41) 27430 (2021)
DOI: 10.1021/acsomega.1c04363
Voir cet article

Experimental measurement and modeling of water-based drilling mud density using adaptive boosting decision tree, support vector machine, and K-nearest neighbors: A case study from the South Pars gas field

Abbas Hashemizadeh, Ahmad Maaref, Mohammadhadi Shateri, Aydin Larestani and Abdolhossein Hemmati-Sarapardeh
Journal of Petroleum Science and Engineering 207 109132 (2021)
DOI: 10.1016/j.petrol.2021.109132
Voir cet article

COVID-19 prediction analysis using artificial intelligence procedures and GIS spatial analyst: a case study for Iraq

Bashar Moneer Yahya, Farah Samier Yahya and Rayan Ghazi Thannoun
Applied Geomatics 13 (3) 481 (2021)
DOI: 10.1007/s12518-021-00365-4
Voir cet article

An insight into the estimation of drilling fluid density at HPHT condition using PSO-, ICA-, and GA-LSSVM strategies

S. M. Alizadeh, Issam Alruyemi, Reza Daneshfar, Mohammad Mohammadi-Khanaposhtani and Maryam Naseri
Scientific Reports 11 (1) (2021)
DOI: 10.1038/s41598-021-86264-5
Voir cet article

Artificial neural network model for predicting the density of oil-based muds in high-temperature, high-pressure wells

Okorie E. Agwu, Julius U. Akpabio and Adewale Dosunmu
Journal of Petroleum Exploration and Production Technology 10 (3) 1081 (2020)
DOI: 10.1007/s13202-019-00802-6
Voir cet article

Prediction of penetration rate in drilling operations: a comparative study of three neural network forecast methods

Ehsan Brenjkar, Ebrahim Biniaz Delijani and Kasra Karroubi
Journal of Petroleum Exploration and Production Technology 11 (2) 805 (2021)
DOI: 10.1007/s13202-020-01066-1
Voir cet article

Effect of a modified nano clay and nano graphene on rheology, stability of water-in-oil emulsion, and filtration control ability of oil-based drilling fluids: a comparative experimental approach

Vahid Nooripoor and Abdolnabi Hashemi
Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles 75 40 (2020)
DOI: 10.2516/ogst/2020032
Voir cet article