Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

Integration of data-driven models for dynamic prediction of the SAGD production performance with field data

Ziteng Huang, Ran Li and Zhangxin Chen
Fuel 332 126171 (2023)
https://doi.org/10.1016/j.fuel.2022.126171

A Machine Learning Approach to Real-Time Uncertainty Assessment of SAGD Forecasts

Seyide Hunyinbo, Prince Azom, Amos Ben-Zvi and Juliana Y. Leung
SPE Journal 28 (01) 342 (2023)
https://doi.org/10.2118/208962-PA

Design of Steam Alternating Solvent Process Operational Parameters Considering Shale Heterogeneity

Zhiwei Ma, Luis Coimbra and Juliana Y. Leung
SPE Production & Operations 37 (04) 586 (2022)
https://doi.org/10.2118/210557-PA

Comparison of different machine learning algorithms for predicting the SAGD production performance

Ziteng Huang and Zhangxin Chen
Journal of Petroleum Science and Engineering 202 108559 (2021)
https://doi.org/10.1016/j.petrol.2021.108559

Incorporating phase behavior constraints in the multi-objective optimization of a warm vaporized solvent injection process

Seyide Hunyinbo, Zhiwei Ma and Juliana Y. Leung
Journal of Petroleum Science and Engineering 205 108949 (2021)
https://doi.org/10.1016/j.petrol.2021.108949

Efficient tracking and estimation of solvent chamber development during warm solvent injection in heterogeneous reservoirs via machine learning

Zhiwei Ma and Juliana Y. Leung
Journal of Petroleum Science and Engineering 206 109089 (2021)
https://doi.org/10.1016/j.petrol.2021.109089

Design of warm solvent injection processes for heterogeneous heavy oil reservoirs: A hybrid workflow of multi-objective optimization and proxy models

Zhiwei Ma and Juliana Y. Leung
Journal of Petroleum Science and Engineering 191 107186 (2020)
https://doi.org/10.1016/j.petrol.2020.107186

Integration of deep learning and data analytics for SAGD temperature and production analysis

Zhiwei Ma and Juliana Y. Leung
Computational Geosciences 24 (3) 1239 (2020)
https://doi.org/10.1007/s10596-020-09940-x

Accelerating Physics-Based Simulations Using End-to-End Neural Network Proxies: An Application in Oil Reservoir Modeling

Jiří Navrátil, Alan King, Jesus Rios, et al.
Frontiers in Big Data 2 (2019)
https://doi.org/10.3389/fdata.2019.00033

Impact of geomechanical effects during SAGD process in a meander belt

Iryna Malinouskaya, Christophe Preux, Nicolas Guy and Gisèle Etienne
Oil & Gas Sciences and Technology – Revue d’IFP Energies nouvelles 73 17 (2018)
https://doi.org/10.2516/ogst/2018011