La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
An interpretable and explainable deep learning model for predicting hydrogen solubility in diverse chemicals
Mohamed Riad Youcefi, Fahd Mohamad Alqahtani, Menad Nait Amar, Hakim Djema and Mohammad Ghasemi Chemical Engineering Science 121048 (2024) https://doi.org/10.1016/j.ces.2024.121048
Development of computational approach for calculation of hydrogen solubility in hydrocarbons for treatment of petroleum
Application of advanced correlative approaches to modeling hydrogen solubility in hydrocarbon fuels
Fahimeh Hadavimoghaddam, Sajjad Ansari, Saeid Atashrouz, Ali Abedi, Abdolhossein Hemmati-Sarapardeh and Ahmad Mohaddespour International Journal of Hydrogen Energy 48(51) 19564 (2023) https://doi.org/10.1016/j.ijhydene.2023.01.155
Modeling of nitrogen solubility in unsaturated, cyclic, and aromatic hydrocarbons: Deep learning methods and SAFT equation of state
Mohammad-Reza Mohammadi, Fahimeh Hadavimoghaddam, Saeid Atashrouz, et al. Journal of the Taiwan Institute of Chemical Engineers 131 104124 (2022) https://doi.org/10.1016/j.jtice.2021.10.024
Application of robust machine learning methods to modeling hydrogen solubility in hydrocarbon fuels
Mohammad-Reza Mohammadi, Fahimeh Hadavimoghaddam, Saeid Atashrouz, Abdolhossein Hemmati-Sarapardeh, Ali Abedi and Ahmad Mohaddespour International Journal of Hydrogen Energy 47(1) 320 (2022) https://doi.org/10.1016/j.ijhydene.2021.09.202
Hydrogen solubility prediction for diesel molecules based on a modified Henry equation
Thermophysical Properties of Heavy Petroleum Fluids
Bernardo Carreón-Calderón, Verónica Uribe-Vargas and Juan Pablo Aguayo Petroleum Engineering, Thermophysical Properties of Heavy Petroleum Fluids 177 (2021) https://doi.org/10.1007/978-3-030-58831-1_6
Thermophysical Properties of Heavy Petroleum Fluids
Bernardo Carreón-Calderón, Verónica Uribe-Vargas and Juan Pablo Aguayo Petroleum Engineering, Thermophysical Properties of Heavy Petroleum Fluids 41 (2021) https://doi.org/10.1007/978-3-030-58831-1_3
Correlation and prediction of solubility of hydrogen in alkenes and its dissolution properties
Recent Developments and the New Direction in Soft-Computing Foundations and Applications
Jose Manuel Dominguez Esquivel, Solymar Ayala Cortez, Aaron Velasco and Vladik Kreinovich Studies in Fuzziness and Soft Computing, Recent Developments and the New Direction in Soft-Computing Foundations and Applications 393 521 (2021) https://doi.org/10.1007/978-3-030-47124-8_42
H2 Solubility in Hydrocarbons Calculated by the COSMO-RS Method
R. Hernández-Bravo, R. Oviedo-Roa, J.-M. Martínez-Magadán, H. Aguilar-Cisneros and J. M. Domínguez-Esquivel Industrial & Engineering Chemistry Research 58(27) 12361 (2019) https://doi.org/10.1021/acs.iecr.9b01845
In‐situ upgrading of heavy oil using nano‐catalysts: A computational fluid dynamics study of hydrogen and vacuum residue injection
Seyed Moein Elahi, Milad Ahmadi Khoshooei, Carlos E. Scott, Zhangxin Chen and Pedro Pereira‐Almao The Canadian Journal of Chemical Engineering 97(S1) 1352 (2019) https://doi.org/10.1002/cjce.23387
Prediction of asphaltene precipitation upon injection of various gases at near-wellbore conditions: A simulation study using PC-SAFT EoS
Saba Mahmoudvand, Behnam Shahsavani, Rafat Parsaei and Mohammad Reza Malayeri Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles 74 63 (2019) https://doi.org/10.2516/ogst/2019037
Predictive method of hydrogen solubility in heavy petroleum fractions using EOS/GE and group contributions methods
Humberto Aguilar-Cisneros, Bernardo Carreón-Calderón, Verónica Uribe-Vargas, José Manuel Domínguez-Esquivel and Mario Ramirez-de-Santiago Fuel 224 619 (2018) https://doi.org/10.1016/j.fuel.2018.03.116