Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

Single emulsion drops for photocatalytic water splitting as a membrane-free approach to product separation

Sangram Ashok Savant, Gaia De Angelis, Swarnava Nandy, Esther Amstad and Sophia Haussener
Cell Reports Physical Science 5 (1) 101755 (2024)
https://doi.org/10.1016/j.xcrp.2023.101755

An interpretable and explainable deep learning model for predicting hydrogen solubility in diverse chemicals

Mohamed Riad Youcefi, Fahd Mohamad Alqahtani, Menad Nait Amar, Hakim Djema and Mohammad Ghasemi
Chemical Engineering Science 121048 (2024)
https://doi.org/10.1016/j.ces.2024.121048

Development of computational approach for calculation of hydrogen solubility in hydrocarbons for treatment of petroleum

Abdulrahman Sumayli and Saad M. Alshahrani
Case Studies in Thermal Engineering 51 103574 (2023)
https://doi.org/10.1016/j.csite.2023.103574

Application of advanced correlative approaches to modeling hydrogen solubility in hydrocarbon fuels

Fahimeh Hadavimoghaddam, Sajjad Ansari, Saeid Atashrouz, Ali Abedi, Abdolhossein Hemmati-Sarapardeh and Ahmad Mohaddespour
International Journal of Hydrogen Energy 48 (51) 19564 (2023)
https://doi.org/10.1016/j.ijhydene.2023.01.155

Modeling of nitrogen solubility in unsaturated, cyclic, and aromatic hydrocarbons: Deep learning methods and SAFT equation of state

Mohammad-Reza Mohammadi, Fahimeh Hadavimoghaddam, Saeid Atashrouz, et al.
Journal of the Taiwan Institute of Chemical Engineers 131 104124 (2022)
https://doi.org/10.1016/j.jtice.2021.10.024

Application of robust machine learning methods to modeling hydrogen solubility in hydrocarbon fuels

Mohammad-Reza Mohammadi, Fahimeh Hadavimoghaddam, Saeid Atashrouz, Abdolhossein Hemmati-Sarapardeh, Ali Abedi and Ahmad Mohaddespour
International Journal of Hydrogen Energy 47 (1) 320 (2022)
https://doi.org/10.1016/j.ijhydene.2021.09.202

Thermophysical Properties of Heavy Petroleum Fluids

Bernardo Carreón-Calderón, Verónica Uribe-Vargas and Juan Pablo Aguayo
Petroleum Engineering, Thermophysical Properties of Heavy Petroleum Fluids 177 (2021)
https://doi.org/10.1007/978-3-030-58831-1_6

Thermophysical Properties of Heavy Petroleum Fluids

Bernardo Carreón-Calderón, Verónica Uribe-Vargas and Juan Pablo Aguayo
Petroleum Engineering, Thermophysical Properties of Heavy Petroleum Fluids 41 (2021)
https://doi.org/10.1007/978-3-030-58831-1_3

Correlation and prediction of solubility of hydrogen in alkenes and its dissolution properties

Mohammad Jamali, Amir Abbas Izadpanah and Masoud Mofarahi
Applied Petrochemical Research 11 (1) 89 (2021)
https://doi.org/10.1007/s13203-020-00260-w

Recent Developments and the New Direction in Soft-Computing Foundations and Applications

Jose Manuel Dominguez Esquivel, Solymar Ayala Cortez, Aaron Velasco and Vladik Kreinovich
Studies in Fuzziness and Soft Computing, Recent Developments and the New Direction in Soft-Computing Foundations and Applications 393 521 (2021)
https://doi.org/10.1007/978-3-030-47124-8_42

H2 Solubility in Hydrocarbons Calculated by the COSMO-RS Method

R. Hernández-Bravo, R. Oviedo-Roa, J.-M. Martínez-Magadán, H. Aguilar-Cisneros and J. M. Domínguez-Esquivel
Industrial & Engineering Chemistry Research 58 (27) 12361 (2019)
https://doi.org/10.1021/acs.iecr.9b01845

In‐situ upgrading of heavy oil using nano‐catalysts: A computational fluid dynamics study of hydrogen and vacuum residue injection

Seyed Moein Elahi, Milad Ahmadi Khoshooei, Carlos E. Scott, Zhangxin Chen and Pedro Pereira‐Almao
The Canadian Journal of Chemical Engineering 97 (S1) 1352 (2019)
https://doi.org/10.1002/cjce.23387

Prediction of asphaltene precipitation upon injection of various gases at near-wellbore conditions: A simulation study using PC-SAFT EoS

Saba Mahmoudvand, Behnam Shahsavani, Rafat Parsaei and Mohammad Reza Malayeri
Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles 74 63 (2019)
https://doi.org/10.2516/ogst/2019037

Predictive method of hydrogen solubility in heavy petroleum fractions using EOS/GE and group contributions methods

Humberto Aguilar-Cisneros, Bernardo Carreón-Calderón, Verónica Uribe-Vargas, José Manuel Domínguez-Esquivel and Mario Ramirez-de-Santiago
Fuel 224 619 (2018)
https://doi.org/10.1016/j.fuel.2018.03.116