Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

Hydrogen solubility in different chemicals: A modelling approach and review of literature data

Pouyan Foroughizadeh, Amin Shokrollahi, Afshin Tatar and Abbas Zeinijahromi
Engineering Applications of Artificial Intelligence 136 108978 (2024)
https://doi.org/10.1016/j.engappai.2024.108978

Feasibility and prospects of symbiotic storage of CO2 and H2 in shale reservoirs

Lei Hou, Derek Elsworth, Jintang Wang, Junping Zhou and Fengshou Zhang
Renewable and Sustainable Energy Reviews 189 113878 (2024)
https://doi.org/10.1016/j.rser.2023.113878

Evaluating the hydrogen storage potential of shut down oil and gas fields along the Norwegian continental shelf

Benjamin Emmel, Bård Bjørkvik, Tore Lyngås Frøyen, Pierre Cerasi and Anna Stroisz
International Journal of Hydrogen Energy 48 (63) 24385 (2023)
https://doi.org/10.1016/j.ijhydene.2023.03.138

Application of advanced correlative approaches to modeling hydrogen solubility in hydrocarbon fuels

Fahimeh Hadavimoghaddam, Sajjad Ansari, Saeid Atashrouz, Ali Abedi, Abdolhossein Hemmati-Sarapardeh and Ahmad Mohaddespour
International Journal of Hydrogen Energy 48 (51) 19564 (2023)
https://doi.org/10.1016/j.ijhydene.2023.01.155

High-pressure vapor-liquid equilibrium of hydrogen and diesel components: Maximum likelihood implicit estimation of equation-of-state binary parameters

Renato A. Barbosa, José Luiz de Medeiros and Ofélia de Queiroz F. Araujo
Fluid Phase Equilibria 573 113879 (2023)
https://doi.org/10.1016/j.fluid.2023.113879

Application of robust machine learning methods to modeling hydrogen solubility in hydrocarbon fuels

Mohammad-Reza Mohammadi, Fahimeh Hadavimoghaddam, Saeid Atashrouz, Abdolhossein Hemmati-Sarapardeh, Ali Abedi and Ahmad Mohaddespour
International Journal of Hydrogen Energy 47 (1) 320 (2022)
https://doi.org/10.1016/j.ijhydene.2021.09.202

Hydrogen solubility in n-alkanes: Data mining and modelling with machine learning approach

Afshin Tatar, Zohre Esmaeili-Jaghdan, Amin Shokrollahi and Abbas Zeinijahromi
International Journal of Hydrogen Energy 47 (85) 35999 (2022)
https://doi.org/10.1016/j.ijhydene.2022.08.195

Data-driven modeling of H2 solubility in hydrocarbons using white-box approaches

Fahimeh Hadavimoghaddam, Mohammad-Reza Mohammadi, Saeid Atashrouz, et al.
International Journal of Hydrogen Energy 47 (78) 33224 (2022)
https://doi.org/10.1016/j.ijhydene.2022.07.238

Modeling hydrogen solubility in hydrocarbons using extreme gradient boosting and equations of state

Mohammad-Reza Mohammadi, Fahime Hadavimoghaddam, Maryam Pourmahdi, et al.
Scientific Reports 11 (1) (2021)
https://doi.org/10.1038/s41598-021-97131-8

Hydrogen solubility in aromatic/cyclic compounds: Prediction by different machine learning techniques

Yongchun Jiang, Guangfen Zhang, Juanjuan Wang and Behzad Vaferi
International Journal of Hydrogen Energy 46 (46) 23591 (2021)
https://doi.org/10.1016/j.ijhydene.2021.04.148

Correlation and prediction of solubility of hydrogen in alkenes and its dissolution properties

Mohammad Jamali, Amir Abbas Izadpanah and Masoud Mofarahi
Applied Petrochemical Research 11 (1) 89 (2021)
https://doi.org/10.1007/s13203-020-00260-w

30th European Symposium on Computer Aided Process Engineering

Omar Péter Hamadi, Tamás Varga and János Abonyi
Computer Aided Chemical Engineering, 30th European Symposium on Computer Aided Process Engineering 48 391 (2020)
https://doi.org/10.1016/B978-0-12-823377-1.50066-5

Predictive method of hydrogen solubility in heavy petroleum fractions using EOS/GE and group contributions methods

Humberto Aguilar-Cisneros, Bernardo Carreón-Calderón, Verónica Uribe-Vargas, José Manuel Domínguez-Esquivel and Mario Ramirez-de-Santiago
Fuel 224 619 (2018)
https://doi.org/10.1016/j.fuel.2018.03.116

An application of molecular reconstruction for light petroleum cuts via entropy maximization

César Pernalete, Fernando Ruette, Alexander Peraza, et al.
Journal of Computational Methods in Sciences and Engineering 17 (1) 177 (2017)
https://doi.org/10.3233/JCM-160671

Modeling of transport phenomena in fixed-bed reactors for the Fischer-Tropsch reaction: a brief literature review

José R.G. Sánchez-López, Angel Martínez-Hernández and Aracely Hernández-Ramírez
Reviews in Chemical Engineering 33 (2) 109 (2017)
https://doi.org/10.1515/revce-2015-0044

Accurate prediction of solubility of hydrogen in heavy oil fractions

Saeid Nasery, Ali Barati-Harooni, Afshin Tatar, Adel Najafi-Marghmaleki and Amir H. Mohammadi
Journal of Molecular Liquids 222 933 (2016)
https://doi.org/10.1016/j.molliq.2016.07.083

Hydrogen Solubility in Hydrocarbon and Oxygenated Organic Compounds

Thi-Kim-Hoang Trinh, Jean-Charles de Hemptinne, Rafael Lugo, Nicolas Ferrando and Jean-Philippe Passarello
Journal of Chemical & Engineering Data 61 (1) 19 (2016)
https://doi.org/10.1021/acs.jced.5b00119

Vapor–Liquid Equilibrium of Hydrogen, Vacuum Gas Oil, and Middle Distillate Fractions

Barbara Browning, Reynald Henry, Pavel Afanasiev, et al.
Industrial & Engineering Chemistry Research 53 (19) 8311 (2014)
https://doi.org/10.1021/ie500930n