Article cité par
La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
F. Porcheron , M. Jacquin , N. El Hadri , D. A. Saldana , A. Goulon , A. Faraj
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles, 68 3 (2013) 469-486
Publié en ligne : 2013-03-06
Citations de cet article :
13 articles
Hybrid quantum neural networks with variational quantum regressor for enhancing QSPR modeling of CO2-capturing amine
Hyein Cho, Jeonghoon Kim, Kyoung Tai No and Hocheol Lim EPJ Quantum Technology 12 (1) (2025) https://doi.org/10.1140/epjqt/s40507-025-00385-8
Machine learning in absorption-based post-combustion carbon capture systems: A state-of-the-art review
Milad Hosseinpour, Mohammad Javad Shojaei, Mohsen Salimi and Majid Amidpour Fuel 353 129265 (2023) https://doi.org/10.1016/j.fuel.2023.129265
A structure-property model for the prediction of pKa values of different amines in the CO2 capture process of concern to the prediction of thermodynamic properties
Zahra Eshaghi Gorji, Ali Ebrahimpoor Gorji and Siavash Riahi Chemical Engineering Research and Design 180 13 (2022) https://doi.org/10.1016/j.cherd.2022.01.043
Highly Selective Physical/Chemical CO2 Separation by Functionalized Fe3O4 Nanoparticles in Hollow Fiber Membrane Contactors: Experimental and Modeling Approaches
Mahboob Rasaie, Abbas Elhambakhsh, Masoud Eskandari, Peyman Keshavarz and Dariush Mowla Energy & Fuels 36 (8) 4456 (2022) https://doi.org/10.1021/acs.energyfuels.2c00219
Fast Prediction of the Equivalent Alkane Carbon Number Using Graph Machines and Neural Networks
Lucie Delforce, François Duprat, Jean-Luc Ploix, et al. ACS Omega 7 (43) 38869 (2022) https://doi.org/10.1021/acsomega.2c04592
Computational screening methodology identifies effective solvents for CO2 capture
Alexey A. Orlov, Alain Valtz, Christophe Coquelet, et al. Communications Chemistry 5 (1) (2022) https://doi.org/10.1038/s42004-022-00654-y
Quantitative Kinetic Model of CO2 Absorption in Aqueous Tertiary Amine Solvents
Xavier Rozanska, Erich Wimmer and Frédérick de Meyer Journal of Chemical Information and Modeling 61 (4) 1814 (2021) https://doi.org/10.1021/acs.jcim.0c01386
Next generation amino acid technology for CO2 capture
Xingguang Xu, Matthew B. Myers, Friso G. Versteeg, et al. Journal of Materials Chemistry A 9 (3) 1692 (2021) https://doi.org/10.1039/D0TA10583J
Role of solvents in CO2 capture processes: The review of selection and design methods
Tohid N.Borhani and Meihong Wang Renewable and Sustainable Energy Reviews 114 109299 (2019) https://doi.org/10.1016/j.rser.2019.109299
Cheminformatics Modeling of Amine Solutions for Assessing their CO2Absorption Properties
Melaine A. Kuenemann and Denis Fourches Molecular Informatics 36 (7) 1600143 (2017) https://doi.org/10.1002/minf.201600143
Deep Eutectic Solvents: Physicochemical Properties and Gas Separation Applications
Gregorio García, Santiago Aparicio, Ruh Ullah and Mert Atilhan Energy & Fuels 29 (4) 2616 (2015) https://doi.org/10.1021/ef5028873
Nanofluids Containing MWCNTs Coated with Nitrogen-Rich Plasma Polymer Films for CO2
Absorption in Aqueous Medium
Larissa Jorge, Sylvain Coulombe and Pierre-Luc Girard-Lauriault Plasma Processes and Polymers 12 (11) 1311 (2015) https://doi.org/10.1002/ppap.201500040
Amine-Based CO2 Capture Technology Development from the Beginning of 2013—A Review
Bryce Dutcher, Maohong Fan and Armistead G. Russell ACS Applied Materials & Interfaces 7 (4) 2137 (2015) https://doi.org/10.1021/am507465f