Article cité par
La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
M. Kramp , A. Thon , E.-U. Hartge , S. Heinrich , J. Werther
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles, 66 2 (2011) 277-290
Publié en ligne : 2011-05-02
Citations de cet article :
29 articles
Investigation on the fluidized attrition characteristics of red mud oxygen carrier and its iron enrichment via chemical looping fluidization process
Heyu Li, Faxing Zhou, Gengmin Zhang, Junchi Wu, Hong Cheng, Enlang Feng, Zhennan Chen and Yan Cao Fuel 398 135555 (2025) https://doi.org/10.1016/j.fuel.2025.135555
Water vapor effects on attrition and elemental migration of iron‐based oxygen carrier in chemical looping combustion
Neng Huang, Ayokunle Omosebi, Xin Gao, Dimitrios Koumoulis and Kunlei Liu AIChE Journal 70 (7) (2024) https://doi.org/10.1002/aic.18419
Attrition rate of potassium-based sorbent particle in a riser and cyclone of a circulating fluidized bed for a 10 MWe scale post-combustion CO2 capture system
Daewook Kim, Yooseob Won, Jeong-Hoo Choi, Ji Bong Joo, Jae Young Kim, Young Cheol Park, Sung-Ho Jo and Ho-Jung Ryu Energy 307 132738 (2024) https://doi.org/10.1016/j.energy.2024.132738
Daewook Kim, Yooseob Won, Jeong-Hoo Choi, Ji Bong Joo, Jae-Young Kim, Young Cheol Park, Sung-Ho Jo and Ho-Jung Ryu (2024) https://doi.org/10.2139/ssrn.4874805
Use of a high-entropy oxide as an oxygen carrier for chemical looping
Iñaki Adánez-Rubio, María T. Izquierdo, Joakim Brorsson, Daofeng Mei, Tobias Mattisson and Juan Adánez Energy 298 131307 (2024) https://doi.org/10.1016/j.energy.2024.131307
Particles attrition of binary mixtures in the coal-fueled chemical looping system based on fluidized bed
Heyu Li, Zhe Sun and Yan Cao Particuology (2023) https://doi.org/10.1016/j.partic.2023.07.008
Recent progress in the development of synthetic oxygen carriers for chemical looping combustion applications
Amr Abdalla, Mohanned Mohamedali and Nader Mahinpey Catalysis Today 407 21 (2023) https://doi.org/10.1016/j.cattod.2022.05.046
Oxygen Carrier Circulation Rate for Novel Cold Flow Chemical Looping Reactors
Amanda E. Alain, Nicole K. Bond, Scott Champagne, Robin W. Hughes and Arturo Macchi Energies 17 (1) 198 (2023) https://doi.org/10.3390/en17010198
The investigation on the attrition of hematite oxygen carrier particles in a fluidization-based chemical looping system
Heyu Li, Zhe Sun, Lijun Tian, et al. Fuel Processing Technology 236 107441 (2022) https://doi.org/10.1016/j.fuproc.2022.107441
Overview of Fluidized Bed Reactor Modeling for Chemical Looping Combustion: Status and Research Needs
Petteri Peltola, Falah Alobaid, Tero Tynjälä and Jouni Ritvanen Energy & Fuels 36 (17) 9385 (2022) https://doi.org/10.1021/acs.energyfuels.2c01680
Pressurised Chemical Looping Combustion (PCLC): Air Reactor design
Pietro Bartocci, Gianni Bidini, Alberto Abad, et al. Journal of Physics: Conference Series 2385 (1) 012127 (2022) https://doi.org/10.1088/1742-6596/2385/1/012127
Optimisation of a sorption-enhanced chemical looping steam methane reforming process
Jon Powell, Suwimol Wongsakulphasatch, Rungrote Kokoo, et al. Chemical Engineering Research and Design 173 183 (2021) https://doi.org/10.1016/j.cherd.2021.07.014
A brief review for chemical looping combustion as a promising CO2 capture technology: Fundamentals and progress
Siddig Abuelgasim, Wenju Wang and Atif Abdalazeez Science of The Total Environment 764 142892 (2021) https://doi.org/10.1016/j.scitotenv.2020.142892
Chemical Looping Combustion of Coal in China: Comprehensive Progress, Remaining Challenges, and Potential Opportunities
Haibo Zhao, Xin Tian, Jinchen Ma, et al. Energy & Fuels 34 (6) 6696 (2020) https://doi.org/10.1021/acs.energyfuels.0c00989
Bench scale analysis of the physical attrition properties for copper-ferri-aluminate oxygen carriers during chemical looping combustion
Jarrett Riley, Ranjani Siriwardane and James Poston Powder Technology 366 891 (2020) https://doi.org/10.1016/j.powtec.2020.02.067
Design of micro interconnected fluidized bed for oxygen carrier evaluation
Tianxu Shen, Xiao Zhu, Jingchun Yan and Laihong Shen International Journal of Greenhouse Gas Control 90 102806 (2019) https://doi.org/10.1016/j.ijggc.2019.102806
Nathan Galinsky, Samuel Bayham, Esmail Monazam and Ronald W. Breault 263 (2018) https://doi.org/10.1002/9783527809332.ch9
CLC, a promising concept with challenging development issues
T. Gauthier, M. Yazdanpanah, A. Forret, et al. Powder Technology 316 3 (2017) https://doi.org/10.1016/j.powtec.2017.01.003
Applications of tribology to determine attrition by wear of particulate solids in CFB systems
Samuel C. Bayham, Ronald Breault and Esmail Monazam Powder Technology 316 59 (2017) https://doi.org/10.1016/j.powtec.2016.10.059
Particulate Formation from a Copper Oxide-Based Oxygen Carrier in Chemical Looping Combustion for CO2 Capture
Feng He, William P. Linak, Shuang Deng and Fanxing Li Environmental Science & Technology 51 (4) 2482 (2017) https://doi.org/10.1021/acs.est.6b04043
Particulate solid attrition in CFB systems – An assessment for emerging technologies
Samuel C. Bayham, Ronald Breault and Esmail Monazam Powder Technology 302 42 (2016) https://doi.org/10.1016/j.powtec.2016.08.016
On the attrition evaluation of oxygen carriers in Chemical Looping Combustion
A. Cabello, P. Gayán, F. García-Labiano, et al. Fuel Processing Technology 148 188 (2016) https://doi.org/10.1016/j.fuproc.2016.03.004
Bulk monolithic Ce–Zr–Fe–O/Al 2 O 3 oxygen carriers for a fixed bed scheme of the chemical looping combustion: Reactivity of oxygen carrier
Zhenhua Gu, Kongzhai Li, Hua Wang, et al. Applied Energy 163 19 (2016) https://doi.org/10.1016/j.apenergy.2015.10.177
Development of an attrition evaluation method using a Jet Cup rig
Benjamin Amblard, Stéphane Bertholin, Carole Bobin and Thierry Gauthier Powder Technology 274 455 (2015) https://doi.org/10.1016/j.powtec.2015.01.001
Model-assisted analysis of fluidized bed chemical-looping reactors
Zhiquan Zhou, Lu Han and George M. Bollas Chemical Engineering Science 134 619 (2015) https://doi.org/10.1016/j.ces.2015.05.037
Modeling of CH4 combustion with NiO/NiAl2O4 in a 10 kWth CLC pilot plant
M.M. Yazdanpanah, A. Forret, T. Gauthier and A. Delebarre Applied Energy 113 1933 (2014) https://doi.org/10.1016/j.apenergy.2013.06.054
Solids transport models comparison and fine‐tuning for horizontal, low concentration flow in single‐phase carrier fluid
Frits Byron Soepyan, Selen Cremaschi, Cem Sarica, Hariprasad J. Subramani and Gene E. Kouba AIChE Journal 60 (1) 76 (2014) https://doi.org/10.1002/aic.14255
Fluidized Bed Technologies for Near-Zero Emission Combustion and Gasification
F. Scala, R. Chirone and P. Salatino Fluidized Bed Technologies for Near-Zero Emission Combustion and Gasification 254 (2013) https://doi.org/10.1533/9780857098801.1.254
Carbon Stripping – A Critical Process Step in Chemical Looping Combustion of Solid Fuels
M. Kramp, A. Thon, E.‐U. Hartge, S. Heinrich and J. Werther Chemical Engineering & Technology 35 (3) 497 (2012) https://doi.org/10.1002/ceat.201100438