La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Hydrocarbon prospectivity of the South Atlantic Orange Basin
Nura Abdulmumini Yelwa, Khairul Azlan Mustapha, Mimonitu Opuwari, S. M. Talha Qadri and Kimon Christanis Journal of Sedimentary Environments 9(4) 747 (2024) https://doi.org/10.1007/s43217-024-00198-2
Depositional characteristics of fine-grained sedimentary rocks and the links to OAE-3 and PETM of the Upper Cretaceous-Paleogene Madingo Formation, lower Congo Basin, West Africa
Detrital input quantification in lacustrine petroleum systems: An example of the pre‐salt source rocks from the Lower Congo Basin (Congo)
Françoise Behar, Vincent Delhaye‐Prat and Sylvain Garel The Depositional Record 7(1) 147 (2021) https://doi.org/10.1002/dep2.131
Stratigraphical nature of the Top Albian surface, from seismic and wells data analyses, in the south Sanaga area (Cameroon Atlantic margin): Palaeogeographical significance and petroleum implications
Carbonate lithofacies identification using an improved light gradient boosting machine and conventional logs: a demonstration using pre-salt lacustrine reservoirs, Santos Basin
Paleoenvironment of the Lower–Middle Cambrian Evaporite Series in the Tarim Basin and Its Impact on the Organic Matter Enrichment of Shallow Water Source Rocks
Mingyang Wei, Zhidong Bao, Axel Munnecke, Wei Liu, G. Harrison, Hua Zhang, Demin Zhang, Zongfeng Li, Xiting Xu, Kai Lu and Zheng Shen Minerals 11(7) 659 (2021) https://doi.org/10.3390/min11070659
Complex lithology prediction using mean impact value, particle swarm optimization, and probabilistic neural network techniques
Influence of well management in the development of multiple reservoir sharing production facilities
João Carlos von Hohendorff Filho and Denis José Schiozer Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles 75 70 (2020) https://doi.org/10.2516/ogst/2020064
Permeability prediction for carbonate reservoir using a data-driven model comprising deep learning network, particle swarm optimization, and support vector regression: a case study of the LULA oilfield