Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

HLD-Based Formulation Prediction for Degassed Oil with Equivalent Minimum Miscibility Pressure

Shuoshi Wang, Wenhua Zhao, Ping Guo, Zheng Gu and Na Yuan
Energy & Fuels 38 (4) 2816 (2024)
https://doi.org/10.1021/acs.energyfuels.3c04149

Exploring the impact of surfactant types and formulation variables on the EACN of crude and model oils

Guillaume Lemahieu, Jesús F. Ontiveros, Valérie Molinier and Jean-Marie Aubry
Colloids and Surfaces A: Physicochemical and Engineering Aspects 694 134029 (2024)
https://doi.org/10.1016/j.colsurfa.2024.134029

Formulating stable surrogate wood pyrolysis oil-in-oil (O/O) emulsions: The role of asphaltenes evidenced by interfacial dilational rheology

Ronald Marquez, Jesús F. Ontiveros, Véronique Nardello-Rataj, Nicolas Sanson, François Lequeux and Valérie Molinier
Chemical Engineering Journal 495 153321 (2024)
https://doi.org/10.1016/j.cej.2024.153321

Iqbal Fauzi, Sri Sulistiyani, Imam Permadi, Arif Bagus Prasetyo, Dodi Miyondri, Anis Nurrachmania Utami, Usman Pasarai, Yohanes B Doi Wangge, Hestuti Eni, Sayak Roy and Cyril Vidaillac
(2022)
https://doi.org/10.2118/210733-MS

Fuel sorption into polymers: Experimental and machine learning studies

Benoit Creton, Benjamin Veyrat and Marie-Hélène Klopffer
Fluid Phase Equilibria 556 113403 (2022)
https://doi.org/10.1016/j.fluid.2022.113403

Fast Prediction of the Equivalent Alkane Carbon Number Using Graph Machines and Neural Networks

Lucie Delforce, François Duprat, Jean-Luc Ploix, et al.
ACS Omega 7 (43) 38869 (2022)
https://doi.org/10.1021/acsomega.2c04592

Smart learning strategy for predicting viscoelastic surfactant (VES) viscosity in oil well matrix acidizing process using a rigorous mathematical approach

Mehdi Mahdaviara, Alireza Rostami and Khalil Shahbazi
SN Applied Sciences 3 (10) (2021)
https://doi.org/10.1007/s42452-021-04799-8

Selection of Optimum Surfactant Formulations with Ultralow Interfacial Tension for Improving the Oil Washing Efficiency

Haihua Pei, Jingling Shan, Guicai Zhang, Jiazhen Zheng and Jianwei Zhao
ACS Omega 6 (37) 23952 (2021)
https://doi.org/10.1021/acsomega.1c02930

Determination of equivalent alkane carbon number for West Siberian oils as a stage of optimisation in surfactant-polymer compositions for chemical flooding

L. P. Panicheva, E. A. Sidorovskaya, N. Yu. Tret'yakov, et al.
Proceedings of Universities. Applied Chemistry and Biotechnology 10 (1) 149 (2020)
https://doi.org/10.21285/2227-2925-2020-10-1-149-158

Use of the normalized hydrophilic-lipophilic-deviation (HLDN) equation for determining the equivalent alkane carbon number (EACN) of oils and the preferred alkane carbon number (PACN) of nonionic surfactants by the fish-tail method (FTM)

Jean-Marie Aubry, Jesús F. Ontiveros, Jean-Louis Salager and Véronique Nardello-Rataj
Advances in Colloid and Interface Science 276 102099 (2020)
https://doi.org/10.1016/j.cis.2019.102099

Using the dynamic Phase Inversion Temperature (PIT) as a fast and effective method to track optimum formulation for Enhanced Oil Recovery

Guillaume Lemahieu, Jesus F. Ontiveros, Valérie Molinier and Jean-Marie Aubry
Journal of Colloid and Interface Science 557 746 (2019)
https://doi.org/10.1016/j.jcis.2019.09.050

Application of a new approach for modeling the oil field formation damage due to mineral scaling

Alireza Rostami, Amin Shokrollahi, Khalil Shahbazi and Mohammad Hossein Ghazanfari
Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles 74 62 (2019)
https://doi.org/10.2516/ogst/2019032