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Résumé — Un modele de combustion a allumage par compression basé sur la physique et la chimie
tabulée : des modes de combustion contrdolés par la chimie jusqu’aux modes contrélés par le
mélange — Ce papier présente une nouvelle approche 0D phénoménologique pour prédire le
déroulement de la combustion dans les moteurs Diesel a injection directe pour toutes les conditions
d’utilisation usuelles. Le but de ce travail est de développer une approche physique en vue d’améliorer la
prédiction de la pression cylindre et du dégagement d’énergie, avec un nombre minimum d’essais
nécessaires a la calibration. Les contributions principales de cette étude sont la modélisation de la phase
de pré-mélange de la combustion et une extension du modele pour les stratégies d’injections multiples.
Dans ce modele, le taux de dégagement d’énergie dii a la combustion pour la phase pré-mélangée est
relié a un taux de réaction moyen du carburant. Ce taux de réaction moyen de carburant est évalué a
I’aide d’une approche basée sur un taux de réaction local de carburant tabulé et la détermination d’une
fonction de densité de probabilité (PDF) de la fraction de mélange (Z). Cette PDF permet de prendre en
compte la distribution de richesse existante dans la zone pré-mélangée. L’allure de cette PDF présumée
est une f-fonction standardisée. Les fluctuations de la fraction de mélange sont décrites avec une
équation de transport pour la variance de Z. La définition standard de la fraction de mélange, établie dans
le cas de flammes de diffusion, est ici adaptée a une combustion pré-mélangée de type Diesel pour
décrire I'inhomogénéité de la richesse dans le volume de contrdle. La chimie détaillée est décrite au
travers de la tabulation du taux de réaction relatif a la flamme principale et du délai d’auto-inflammation
relatif a la flamme froide, ces tabulations sont fonction de la variable d’avancement ¢, du taux de gaz
briilé ainsi que des grandeurs thermodynamiques telles que la température et la pression. Le modele de
combustion de diffusion est basé sur 1’évaluation d’une fréquence de mélange qui est fonction du taux de
turbulence dans la chambre et fonction de la masse de carburant vapeur disponible. Ce modele de
combustion est 1’un des sous-modeles inclus dans le modele thermodynamique de chambre de
combustion basé sur une approche 2 zones différentiant gaz frais et gaz br{ilés. De plus, un sous-modele
concernant la multi-injection a été développé pour prendre en compte les interactions entre les jets et pour
décrire I’'impact de la multi-injection sur le mélange air/carburant. Les résultats numériques ont été
comparés aux mesures réalisées sur un moteur Diesel Renault de 2 litres. Pour I’ensemble des points de
fonctionnement explorés, une bonne correspondance a été obtenue entre les résultats issus des
simulations et les mesures expérimentales.
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Abstract — A Physics and Tabulated Chemistry Based Compression Ignition Combustion Model:
Jrom Chemistry Limited to Mixing Limited Combustion Modes — This paper presents a new 0D
phenomenological approach to predict the combustion process in multi injection Diesel engines operated
under a large range of running conditions. The aim of this work is to develop a physical approach in
order to improve the prediction of in-cylinder pressure and heat release. Main contributions of this study
are the modeling of the premixed part of the Diesel combustion with a further extension of the model for
multi-injection strategies. In the present model, the rate of heat release due to the combustion for the
premixed phase is related to the mean reaction rate of fuel which is evaluated by an approach based on
tabulated local reaction rate of fuel and on the determination of the Probability Density Function (PDF)
of the mixture fraction (Z), in order to take into consideration the local variations of the fuel-air ratio.
The shape of the PDF is presumed as a standardized B-function. Mixture fraction fluctuations are
described by using a transport equation for the variance of Z. The standard mixture fraction concept
established in the case of diffusion flames is here adapted to premixed combustion to describe
inhomogeneity of the fuel-air ratio in the control volume. The detailed chemistry is described using a
tabulated database for reaction rates and cool flame ignition delay as a function of the progress variable c.
The mixing-controlled combustion model is based on the calculation of a characteristic mixing frequency
which is a function of the turbulence density, and on the evolution of the available fuel vapor mass in the
control volume. The developed combustion model is one sub-model of a thermodynamic model based on
the mathematical formulation of the conventional two-zone approach. In addition, an extended sub-
model for multi injection is developed to take into account interactions between each spray by describing
their impact on the mixture formation. Numerical results from simulations are compared with
experimental measurements carried out on a 2 liter Renault Diesel engine and good agreements are

found.
NOMENCLATURE Subscripts
d Orifice diameter (m) a Ambient (air + EGR)
c Progress variable (-) b Burned zone
h Specific enthalpy (J/kg) comb  Combustion
K Average kinetic energy (J) cyl In-cylinder
k Turbulent kinetic energy (J) diss Dissipation
m Mass (kg) exh Exhaust
m Mass flow rate (kg/s) f Fuel
M Molecular weight (kg/mol) HT High Temperature
P Pressure (Pa) i ith spray
R Specific gas constant (J/kg.K) inj Fuel injection
s Non-dimensional penetration (-) int Intake
r Non-dimensional penetration time (-) k Species
T Temperature (K) lig Liquid
u Turbulence intensity (m/s) LT Low Temperature
v Velocity (m/s) nm Not-mixed zone
V. Volume (m%) prod  Production
Y Mass fraction (-) s Spray
Z Mixture fraction (-) st Stoichiometric
p  Density (kg/m?) u Unburned zone
Y Heat capacity ratio (-) vap Vaporization
o Angular speed (rad/s) pre Premixed
o Reaction rate (s™) diff Diffusion
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Abbreviations

Al Auto Ignition

CI Compression Ignition

CAx Crankshaft Angle when x% of fuel is burned

IMEP Indicated Mean Effective Pressure
DI Direct Injection

SOI Start Of Injection

MEP Mean Effective Pressure

Pmax Pressure peak value

alpha Pmax  Pressure peak position

HCCI Homogeneous Charge Compression Ignition
ICE Internal Combustion Engine

SI Spark Ignition

EGR Exhaust Gas Recirculation

aTDC After Top Dead Center

HRR Heat Release Rate
INTRODUCTION

During recent years, considerable improvements of High
Speed Direct Injection Diesel Engine technology have been
achieved, with a strong increase in fuel economy and a
remarkable reduction of emissions and combustion noise.
These improvements have been achieved with the introduc-
tion of complex system-layouts involving a large number of
devices such as EGR system or Common Rail Direct
Injection System. New strategies in Diesel combustion tend
to use HCCI (Homogeneous Charge Compression Ignition)
or LTC (Low Temperature Combustion) combustion modes
more and more. Indeed, for Diesel applications, the goal is to
achieve the combustion of a homogeneous mixture that pro-
duces lower soot and NO, emissions than that produced by
diffusion flame. Many authors [1-4] have proven that the
combustion of a premixed lean charge can produce very low
NO, and smoke emissions. Many strategies are developed to
control HCCI combustion such as massive EGR combined
with multiple injection events. In [5] authors investigate the
potential of high EGR rate with an early pilot injection and a
main injection close to TDC (Top Dead Center).

These latest developments in engine technology involve
strong developments of engine models to describe the effects
of fuel injection systems on combustion process. 3D detailed
engine simulations using CFD can provide detailed results
reproducing the in-cylinder combustion process but, due to
long execution times, are a rather limited proposition for pre-
dictive investigations and parameter studies. Alternatively,
the key issue with spatially simplified OD-models is the
degree of accuracy that can be achieved. Improvement of
physical representative capability while keeping reasonable
CPU performances in order to be embedded in a full engine
simulator is a challenging and relevant topic in 0D model

development. Phenomenological 0D engine models are of
particular relevance to perform a large number of numerical
tests at costs that are much lower than those associated with
experiments. Recent models distinguish premixed combus-
tion from diffusion combustion. In Barba et al. [6], the pre-
mixed part of combustion is described by a turbulent flame
propagation formulation, and the diffusion combustion is
described as a single stage mixing controlled process.
Chmela et al. [7] have proposed a model that relies on the
concept of mixing controlled combustion based on the fact
that, in today’s DI Diesel engines, the rate of heat release is
mainly controlled by the instantaneous fuel mass present in
the cylinder charge and by the density of turbulent kinetic
energy. Chmela and Orthaber [8] distinguish the fuel which
burns in the premixed phase from the fuel which burns in the
diffusion phase, by using a transition function. The latter
models use a great number of empirical coefficients that
require experimental measurements to be adjusted, resulting
in a lack of predictive capability to accurately describe cur-
rent challenges such as quasi HCCI combustion, premixed
lean charge combustion, multi injection strategies or combus-
tion with high EGR rate. Some phenomenological engine
models have been designed to be directly used as a tool for
car manufacturers in order to involve engine simulation in
engine control design [9] or to explore alternative combus-
tion systems in Direct Injection Diesel engines by providing
useful information on spray penetration [10], by computing
heat release during combustion with a detailed description of
the Diesel jet [11], or by taking into account spray interaction
with a swirl [12]. To satisfy both the accuracy and time
requirements, the Probability Density Function (PDF) con-
cept has been introduced together with some phenomenologi-
cal spray models to consider the effects of spatial inhomo-
geneities, such as equivalence ratio distribution, on the
combustion characteristics [13, 14]. For reliable simulation of
the initiation of the combustion by Auto Ignition of the fuel
and the following pre-mixed combustion, detailed chemical
kinetic models have been introduced together with combus-
tion models [15].

The aim of this work is to develop a combined physical
and chemistry based approach for combustion modeling in
Diesel engines. The major challenge for the combustion
model consists in precisely describing the overall engine
operating conditions. Dec [16] has proposed a conceptual
model of DI Diesel combustion which distinguishes pre-
mixed combustion from diffusion combustion to account
for split injections (pilot injection(s), main injection(s),
post-injection(s), etc.). The premixed part of the combustion
process is governed by chemistry, while the turbulent mix-
ing of air and fuel controls the diffusion combustion. The
relative importance between these two phases varies greatly
depending on engine speed and load and is heavily influ-
enced by the injection process, mainly the quantity of fuel
injected during the ignition delay. In DI Diesel combustion,
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premixed combustion is characterized by an air/fuel ratio
distribution inside the spray volume [17], more or less homo-
geneous according to time after injection and mixing velocity
[18]. The first Auto Ignition site appears inside the spray,
where chemical and thermodynamic conditions are the most
favorable [19, 20]. In this paper, the air/fuel ratio stratifica-
tion inside the spray region is described by a presumed PDF
approach [21]. The diffusion combustion model is based on
the Barba et al. [6] approach, in which the Heat Release Rate
is described with a characteristic mixing frequency.

Today high EGR rates are used together with multi injection
strategies to lower NO, and soot emissions and also combus-
tion noise [5, 22]. In zero dimensional models, high EGR
rates are taken into account through the thermodynamical
model and the Auto Ignition model. But it is very difficult to
reproduce physical phenomena occurring during multiple
injections. Indeed, a great part of these phenomena is driven
by internal engine geometry, in-cylinder temperature and
species distribution and is modified by each previous injec-
tion [5, 22]. In this study, an approach with multi virtual
zones is chosen to describe interactions between each spray.

In the first part of this paper, each sub-model describing
the physical phenomena occurring in Direct Injection Diesel
Engine is presented. Using a limited number of operating
points the model calibration procedure is then described.
Finally, using experimental results from a 2 liter Renault
Diesel engine operated under a wide range of operating con-
ditions and parametric variation, the simulated results are
compared with the experimental ones.

1 THE PHENOMENOLOGICAL COMBUSTION MODEL

1.1 Overview

In conventional D.I. Diesel combustion, the combustion
process is characterized by a high air/fuel ratio distribution
inside the combustion chamber. Indeed, in case of single
injection, just after the Start Of Injection, the spray volume
grows and a mixture zone is created with vaporized fuel and
entrained surrounding gas. The time between Start Of
Injection and start of combustion is the ignition delay period.
The first site of Auto Ignition (Al) appears inside this pre-
mixed zone, where chemical and thermodynamic conditions
are the most favorable. The evolutions of thermodynamic
conditions, due to piston motion, mixing process and heat
release at the first site, produce the multiplication of Auto
Ignition sites. In opposition to premixed combustion in Spark
Ignition (SI) engine, premixed combustion phase in
Compression Ignition (CI) engine is not described by a flame
front propagation. Total Heat Release Rate in premixed com-
bustion can be considered as the sum of the Heat Release
Rate due to combustion at each Auto Ignition site. This phase
of combustion is limited by the mass of air/fuel mixture

available, produced during the Auto Ignition delay. This
chain reaction leads to a very fast and strong heat release,
which gives the characteristic noise of Diesel Engines. Fuel
injected after Al burns in diffusion combustion mode which
is controlled by the mixing process. In this combustion
phase, the fuel burns progressively when the vaporized fuel is
mixed with the surrounding entrained gas.

In the latest Diesel engine designs, several numbers of
devices, such as EGR system or multi injection strategies
with Common Rail Direct Injection System, are used to
improve pollutant emission performances. To model multi
injection strategies, an extended model of a previous work
described in [23] has been developed.

Figure 1 shows the basic principle diagram of the
combustion chamber in the case of two injections. For
numerical simulations, this principle is applied to multiple
injections, with interactions between each spray zone.
Arrows represent the link and interactions between each
sub-model.

The description of the thermodynamic conditions in the
combustion chamber is based on a mathematical formulation
of the conventional two-zone approach. This zero-dimen-
sional thermodynamic model assumes that at any time during
the combustion process, the cylinder volume is divided into
two zones, corresponding to burned and unburned gas
regions. In each zone the thermodynamic state is defined by
the means of thermodynamic properties and the specific heat
of each gas component changes according to the approxi-
mated formula from the JANAF thermodynamic properties
table. Unburned gas composition corresponds to dry sur-
rounding air (N,, O,, Ar, CO,) with fuel vapor (n-heptane
C;H,4). N-heptane has been chosen because of its Al charac-
teristics which are close to commercial Diesel ones, espe-
cially in terms of Cetane number [24]. Burned gas mixture
composition results from a complete combustion equation in
lean conditions (O, N,, H,O, Ar, CO,). Both zones are
assumed to have the same uniform in-cylinder pressure. The
unburned mixture and burned mixture zones are each treated
as separate open systems, with mass exchange and variable
composition, and the governing equations are the mass and
energy conservation equations and ideal gas equation of
state. Mass flow rate in each zone is deduced from a balance
equation corresponding to mass transfer through intake and
exhaust valves, mass transfer between the two zones due to
combustion and fuel injection rate in the unburned gas zone.
Instantaneous heat transfers are modeled with a Woschni
model [24, 25] for DI Diesel Engine.

This quasi-dimensional thermodynamic model incorpo-
rates several sub-models to take into account several physical
phenomena (turbulence, vaporization, spray and entrained
gas mass flow rate), represented in Figure 1.

As shown in Figure 1, each injection leads to a zone
implementing a spray, vaporization and combustion submod-
els. Flow field inside the combustion chamber is described
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Figure 1

Basic principle of combustion chamber model for a two-injections strategy.

with one turbulence model which takes into account each
injection.

This approach makes use of the model developed in [18,
26, 27] for HCCI combustion, but in the present work only
three species are considered: burned gas, unburned gas and
fuel. The description of the combustion process is here also
simplified by modeling the two combustion phases by their
own sub-model. The main evolution presented in this paper
concerns the approach developed for multi injection: contrary
to [27], here each spray can interact with all previous sprays.
More details are given in the next section.

1.2 Spray and Entrained Surrounding Gas Model

The spray model is based on the approach developed by
Naber and Siebers [28, 29], which is a theoretical approach
for the evaluation of the penetration of a non-vaporizing ideal
liquid spray (Fig. 2).

In [28], a scaling law of the non-dimensional spray pene-
tration according to the non-dimensional penetration time is

given:
1 1
(1 7 )n (H

With the dimensionless time and density: 7, = —;

1/~ 2
and time scale: 17 = dp? (p - m) 1
v, tan i
' 2

d is the orifice diameter, v, the fuel injection velocity at the
orifice exit, and o the idealized spray angle associated to the
ith spray.

This model is valid for stationary conditions. However, in
ICE, conditions are transient as density in the combustion
chamber varies strongly due to piston motion. In order to
take into account ambient conditions variation in the com-
bustion chamber, Jaine [30] and Dronniou [31] suggest deriv-
ing the previous penetration model, described with Equation
(1), to obtain a non-dimensional velocity:

n

72
- I+
_ds _

_d_;i n l+1

This instantaneous velocity, which can be estimated at
every time according to the surrounding conditions, allows
rebuilding the non-dimensional penetration of the jet thanks
to a simple integration:

gi = fﬁid;i (3)

Vi

@
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Figure 2
Conical ith spray properties [28, 29].

- 1
Jaine [30] proposes: dr; ~ tTdt

In addition, Siebers et al. [28, 29] show that all spray
angle data can be fitted with the following relationship:

0.19
tan(i)=0.z6 Pal|  _00043 P2 )
2 [ P,

p; and p, are respectively the liquid fuel and entrained ambient
air densities. The relationship between the idealized spray
angle o, and the measured spray angle 0; is given by [21]:

tan (&) =0.66 tan (i) )
2 2

Through injection experiments in a constant volume vessel
containing nitrogen at given pressure and temperature, corre-
lations (3) and (5) have been validated. In order to validate
the model of gaseous spray tip penetration, injections of
Normafluid (fluid used to simulate commercial Diesel) in a
closed pressurized constant-volume vessel were computed.
Figure 3 presents some computed results compared with
experiments.

Figure 3 compares the computed spray penetrations with
experimental data obtained in a high pressure vessel for low
and high ambient-air pressure conditions. Results are in good
agreement with experiments. As expected the model is sensi-
tive to parameters such as thermodynamic state of ambient
gas and injection pressure.

Finally, the spray volume of zone i is given by the geomet-
rical cone definition formed by this jet:
d\p .
—\/E 3 (6)

T 2 .
—tan” | — S+ X, | — X,
3 (2) (ai)
tan| —
2

The entrained surrounding gas model is based on mass
and momentum conservation laws. Spray velocity is assumed
decreasing with the surrounding air entrainment in the spray
volume. Air + EGR mixture density is assumed to be very
close to the total density in the combustion chamber: p, = p.
Thus the total entrained gas mass flow rate into the spray
zone can be written as [23]:

V.-V V,
(Cy"/ Si)mcyl_pvi

eyl eyl

s, =pVs — Vi (7N
with V.., and Vg being the chamber volume and the ith spray
volume respectively, V,,, results from the piston kinematics
and Vg results from the spray sub model.

Equation (7) gives the total entrained gas mass flow rate in
the current spray. As shown in Figure 4, the entrained gas
into the current spray zone “i” comes from the ambient gas
zone, and also from previous spray zones

Figure 4 gives the basic principle of multi injection
approach in the case of three injections. As an example the
zone i, associated to the ith injection, has the i-1th injection
and i-2th injection as source zones for gas entrainment, in

addition to ambient gas zone.



N Bordet et al./ A Physics and Tabulated Chemistry Based Compression Ignition Combustion Model: 829
from Chemistry Limited to Mixing Limited Combustion Modes

70 Sim Pa = 45 bar

60+ + Exp Pa = 45 bar
€ Sim Pa = 15 bar
E50r <&  ExpPa=15bar
£ Injection rate (model)
240
c
-(%30' L - A L R 2 2B 4
S 20}
[0
o

10

0 Il Il

0 0.002 0.004 0.006 0.008 0.010
a) Time (s)

40 +

+

30
> +
2 + +
~ ool + + . +
220 =+ - - F
2 N + T 4.+ + 4+ 7
< MR I N IR

10

0 6 A | | | |

0 0.002 0.004 0.006 0.008 0.010
b) Time (s)

Figure 3

Comparison of predicted and measured temporal spray tip penetration and spreading angle for two ambient conditions (blue: p, = 17 kg/m?,
red: p, = 50 kg/m?) and other parameters kept constant. The orifice diameter, pressure drop through the orifice and injected fuel temperature
were 128 wm, 1 600 bar and 350 K, respectively. Because of fuel spray impingement on combustion chamber walls, experimental penetration
lengths are limited to 30 mm.

Miig k

Min g5\ , Ambient gas
(Air + EGR)

In this study, the fraction of the total gas originating from

. \‘ previous injection zones and ambient gas zone in the total
# uel rate . . . .
Entrained i entrained gas is taken proportionally to each mass fraction for
"W gasrate ) each zone.
min,skﬂs,. =Y, kmm,s, (®)
with rz,, SisS; the gas mass flow rate from zone k=1,2,...,i~1 to
the ith zone, m, 5. the total entrained gas mass flow rate into
the ith zone, given by Equation (7) and:
m .
Y, = —% the mass fraction of the zone k.
m,,
Injection i Injection i-1  Injection /-2 ) . L .
Figure 5 represents a general case with four injections in
Figure 4 non-reactive conditions. As shown in Figure 5a, each injec-
Schematic of multi injection approach with three injections: tion rate has a typical pmﬁle Corresponding to the injeCtion

repartition of gas mass flow rate between zones. type. The first injection rate corresponds to a pilot injection
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Figure 5

Model results for 4 injections in non-reactive conditions: a) injection rate profile; b) gas mass evolution in each zone; c) fuel vapor mass

evolution in each zone.

early in the cycle, the second injection rate corresponds to a
pre-injection just before the main injection (3rd injection
rate) and the 4th injection rate corresponds to a post injection
occurring very late in the engine cycle. Figure 5b shows the
gas mass evolution in each zone associated to each injection
rate. With this approach the zone associated to the main
injection (red) interacts with the two previous zones, corre-
sponding to pilot and pre-injection zones, but not with the
ambient gas zone. Simulation results show that this multi
injection approach well represents the fact that pilot and pre

injections modify the surrounding conditions for the main
injection.

1.3 Vaporization Model

The vaporization model is used to predict the vaporized fuel
mass flow. It must take into account spray expansion, aero-
dynamics, gas temperature and composition in the combus-
tion chamber. Three approaches are mainly used [6, 7, 18]:
the overall vaporization model, the model based on the “d?”
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law and the isolated droplet model. The first approach was
selected because of the low CPU time required. It consists in
a global first order model vaporizing the injected liquid fuel
1y, ; according to a characteristic time T, [7]:

vapt _f

Linj

m,,q .t )

where:

C d
T, = V‘Z T2’ (10)

with, k the turbulent kinetic energy given by (14), C,,, th
vaporization model constant, d the diameter of the 1njector
hole, T, the characteristic temperature of surrounding air.
This temperature is assumed to be the mean combustion
chamber temperature, T, ., = T,,. Finally, the available fuel
vapor mass in the zone assomated to the ith injection is

defined as:
mg; = f(mvap,i =My i ¥ My, )dt (11)

with, n'zvap ; the rate of vaporized fuel obtained with Equation
9), and 11y oty = 11 compy i pre + 11 comp, i g the fuel rate consumed
by combustion in the ith zone. 1 ., ; e and 1t comb, i, dif 3TE
deduced respectively from Equations (17) and (29). mﬁ in,S; is
the fuel vapor mass included in the total entrained gas mass in
the ith zone computed with Equation (7). Figure 5c shows the
fuel vapor mass evolution in each zone associated to each
injection rate, for a strategy with four injections in non-reactive
conditions. Without combustion, all vaporized fuel associated
to pilot and pre injection is entrained into the main zone.

1.4 Two States Turbulence Model:
Modified k-K Model

In Internal Combustion Engine, internal aerodynamics plays
a major role. The dynamics of turbulent motion can be
described as follows. Firstly, kinetic energy associated with

from large to small scales of turbulence, and finally kinetic
energy is dissipated by viscous friction.

Chmela and Orthaber [7, 8] demonstrate that the influence
of the spray kinetic energy, compared to other production
terms, is dominating and thus assume that the other terms are
negligible. Indeed, the production of turbulence is mainly due
to a strong shear at large scale between spray and surround-
ing gas in the combustion chamber. But newer engines
implement technologies such as swirl flaps which produce
large swirl numbers. Thus, the model must take into account
combustion subjected to large swirl numbers that influence
average movement in the combustion chamber. Swirl which
is used for pollution control (reduction of particulate emis-
sions) affects the mixing rate. Two control volumes are then
considered in the energy balance equations, as described in
Figure 6. Firstly, in the combustion chamber volume, swirl
creates a flow and the associated kinetic energy. After the
Start Of Injection, swirl dissipates energy in the spray volume,
resulting in spray deformation, and kinetic energy associated
with the average movement is increased. In the second
volume, there are two main steps. At first, the kinetic energy
associated to the mean movement is transferred to the fluctu-
ating movement and creates turbulent kinetic energy at large
scale. Then, this turbulent kinetic energy is transferred to
small scales and is dissipated by viscous friction.

For total flow in the combustion chamber, the kinetic
energy associated with the average movement is [32, 33]:

chvl 1 ]
7 = Cim 5 int mt +C 2 exhvexh

(12)
m exh dKC.Vl

" m dt

dK

+ swirl

dt

prod diss

In the above equation, m is the total mass in the cylinder
and K, production terms are mainly related to the kinetic
energy of intake, exhaust flows and swirl. In Equation (12),
swirl term is defined as:

the mean flow is transferred to the large scales of fluctuating dK, i, _d (l Jo? )
motion. Then, kinetic energy is isentropically transferred dr |, di\2 "
Air intake  Swirl Exhaust Fuel €
Koyl Dissipation K mrmrmrmmm s > k
Combustion Dand P
chamber volume spray volume

Figure 6

Diagram of the energy balance in the combustion chamber.
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and the cylinder inertia moment is defined as J=/[ff, p r*dr do
dz. J is assumed to be the sum of the inertia moment of the
bowl volume, which is constant, with the inertia moment of
the rest of the combustion chamber, which is variable:

T P oW ) N ore ’
= Ep(Hbowl (#) + Hpixton (%) ]

®,,,. is the bore diameter, ®@,,,; is the bowl diameter, H,,,,
and H,,,,, are the bowl height and the piston position respec-
tively. Density p is assumed uniform throughout the combus-
tion chamber volume and it is assumed that w,;, = wg,;.-
Finally, only viscous friction induces energy dissipation and

with the definition of the friction viscous torque:

dK o]
<yl bore 3
dt) = CFO‘)swirl = _Cdiss 2 (Dswirl

diss

with Cy the torque of viscous frictions calculated with the
Stokes law in case of high velocity and Cy, the dissipation
model parameter.

In the following equations, the control volume corresponds
to the spray volume. The assumption for the energy balance
equation in the spray volume is that swirl does not induce
mass transfer between the surrounding air and the spray
volume, but only dissipates energy. By writing the energy
conservation equations, the rate of kinetic energy of average
and turbulent movement in the spray are [32, 33]:

) K\ . .
dK B | Por g g P p (13)
dt dt |,; dt |, m P
%=P—D+kM+kB (14)
dt m P

With the production and dissipation terms, P = cp K/tp,
D = ¢pkltp, and characteristic times: t,=L/Up, tp=L/u’. The
integral length scale L; is assumed proportional to a character-
istic dimension of the combustion chamber, L;= cL3\/7€yl.
Finally, kinetic energy due to the injection rate is written as:

3

dr |,; 2 W

Clishs> Mhote> Shote> @nd Py are the discharge coefficient, the
number of injector holes, the injector hole surface and the
fuel density respectively.

dE kin = 1 mi"j

1.5 Interactions Premixed/Mixed Controlled
Combustion

The distribution of the vaporized fuel mass between
premixed and diffusion combustion is done with a constant
parameter C;,, € [0,1]. When the ratio burned/total injected
fuel mass is higher than the parameter, all the vaporized fuel
is burned in the diffusion combustion mode. All fuel vapor-

ized, before the parameter is reached, is added to the premixed

zone. This definition of fuel vapor distribution allows taking
into account a delay between the Auto Ignition in premixed
zone and the beginning of the diffusion combustion.
Moreover, Barba et al. [6] observe that at the beginning of
the diffusion combustion there still is a chemical delay
retarding the combustion. To take into account this delay,
Barba et al. [6] propose a simple empirical equation:

F= (Q—) (15)

Q pretotal i

Equation (15) is nothing else than a pre-factor for the
diffusion combustion, described with Equation (29), retarding
the mixing-controlled burning while the premixed combustion
is not finished. The value of the exponent is chosen equal to:
n=3.

1.6 Premixed Combustion Model

The accurate description of the premixed combustion is
important especially at part load conditions or for multi injec-
tion strategies. Indeed, for single-injection tests with low-
torque and strongly diluted conditions, the most part of the
fuel vapor burns in premixed mode. The premixed combus-
tion influences the diffusion combustion by consuming a
great part of the injected and vaporized fuel which is then no
more available for all the subsequent combustion phases. The
same phenomenon occurs for pilot combustion in the case of
multi injection strategies. The fuel mass burned in pilot com-
bustion must be known for an accurate description of the
main combustion phase. One of the main issues in conven-
tional Diesel combustion modeling is that Auto Ignition takes
place in stratified-mixture conditions [20, 34]. In this work,
the premixed combustion mode is modeled assuming that the
reaction mechanism, which controls premixed combustion, is
similar to the one that takes place during ignition delay.
Consequently, to model this part of combustion, a detailed
chemistry-based Auto Ignition model including low tempera-
ture phenomena is used to compute a local reaction rate of
fuel. The importance of chemical kinetics in new injection
strategies in conventional Diesel engines does not allow the
use of classical Diesel Auto Ignition models based on over-
simplified representations of the chemistry such as those
found in Barba er al. [6]. The tabulation method adopted in
this work has been originally developed for the 3D Internal
Combustion Engine calculations ECFM3Z model [35] and
here adapted for the OD approach.

Moreover in DI Diesel engines, an equivalence ratio gradient
exists across the spray volume [36]. Due to the non-linear
dependency of the reaction rate of fuel to equivalence ratio,
the equivalence ratio distribution, which develops in the sur-
rounding gas, must be considered to correctly estimate the
rate of heat release. Thus, in the present model, the mean
reaction rate of fuel is evaluated by an approach based on the
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determination of the Probability Density Function of the
mixture fraction Z; € [0,1]. The mean reaction rate associated
to fuel is given by the convolution product between the local
reaction rate of fuel (bf’i, determined by tabulation, and the
Probability Density Function of the mixture in the control
volume PZ; 7 (Z):

1
(i)f,i = fPZl,zﬂ"Z; (Zi)(‘bf,i (Zi)dZi (16)

0
Equation (16) is obtained according to several assumptions
[17, 26, 27]: temperature, pressure and EGR mass fraction
are considered homogeneous in the spray volume, and the
progress variable c; is assumed homogeneous during com-
bustion, i.e. c(Z;)=¢;,VZ;. Thanks to these assumptions the
general form of the joint PDF [18, 37] is reduced to a simple
single variable PDF. In [37], the impact of this assumption on
the combustion process is discussed and it is shown that the
Auto Ignition process is not affected. The rate of fuel mass

consumed by the premixed combustion is then:

mf.comb,i,pre = d)f,i mf,pre,i (17)

My, ; is the mass of the vaporized fuel available for premixed
combustion in the ith spray zone. This mass is obtained from
Equation (11) and with the interaction premixed/diffusion
combustion model described previously.

1.6.1 Tabulated Auto Ignition Model Based on Detailed
Chemistry

Owing to its low CPU time cost, a tabulation technique
issued from three-dimensional approaches [38-40] is chosen
in this work. The tabulation strategy used is based on the
method developed by Colin et al. [39]. The method is based
on tabulated reaction rates to capture the early heat release
induced by Low Temperature Combustion. Cool flame igni-
tion delay when present and cool flame fuel consumption are
also tabulated. The reaction rate, fuel consumption, and cool
flame ignition delay tables are built a priori from complex
chemistry calculations. The Auto Ignition (AI) model has
been first validated by Colin et al. [39] in homogeneous
configurations and then applied to 3D simulation of conven-
tional Diesel combustion. This approach, previously devel-
oped by Pires da Cruz [38], relies on the a priori construction
of a database from complex chemistry simulations of Auto
Ignition. The Auto Ignition phenomenon can essentially be
seen as the rapid oxidation of a premixed charge of fuel and
surrounding air. In ICE, Auto Ignition can include cool flame
chemistry, depending on local conditions and the main
challenge for modeling Al, is to predict when and where this
phenomenon occurs. Simulations in homogeneous reactor
[41] show the existence of two delays with these operating
conditions. A small fraction of fuel is rapidly released after a
first delay and then reactions slow down until a second delay
is reached. The present model uses a single tabulated delay

and a tabulated database for the reaction rates as a function of
the progress variable c;.

In [39], the Auto Ignition database has been generated
with the SENKIN code [39, 42] and calculations have been
performed at constant pressure. The Curran et al. [43] mech-
anism for n-heptane has been chosen as the reference fuel,
due to its ignition delay characteristics close to commercial
fuels used for Diesel engines. Database points are supposed
to cover the widest range of possible combinations of ther-
modynamic conditions that can be found in conventional
Diesel or HCCI engine.

With this Auto Ignition model, the cool flame ignition
delay T, is calculated according to [38]. T, is defined as the
instant of maximum temperature versus time derivative,
(dT/dt),,,«- Before the low temperature delay is reached, it is
very difficult to predict Auto Ignition with reduced chemical
models since low temperature chemical reactions are very
complex and highly non-linear. The cool flame delay is
calculated through integration of the intermediate species Y.
Considering a homogeneous flow without convection and
diffusion, the growth rate of Y, is proportional to the amount
of fuel tracer Y7;; and is a function of the local cool flame
ignition delay defined earlier:

dpY, _-
Zl‘l =pYTf,iF(17LT) (18)
with:
2 2 );
Bt +4(1- Bt )=t
i (19)
F(t,)=

.ELT

B is a characteristic time chosen equal to 1 s. [38]. The
fuel tracer represents the amount of fresh mixed fuel that
would exist in the spray volume without chemical reactions.
The cool flame ignition delay is reached when the intermediate
variable is equal to the amount of fuel tracer present in the
fresh gases: 17, > I7Tﬂ. Once T, is reached, a certain amount of
heat c, is released. This parameter is tabulated using complex
chemistry calculations to obtain a realistic early heat release
in all cases. If Zc> (I-cy) )7T , the cool flame fuel consumption
is computed from:

; |LT

s (20)

TC

In the original model [38], the fuel consumption character-
istic time T, is assumed constant, but in the present model it
is defined as a model parameter. Indeed, this parameter has
an impact on the development of the second delay. It is
shown thereafter that this parameter can be kept constant for
the overall operating range for one particular engine. In the
absence of cool flame, both delays are equal and ¢, =0, so
the reaction rate is computed according to the following sec-
tion. The remainder of the Auto Ignition process is computed
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from tabulated results of the reaction rate as a function of the
progress variable c¢;, again issued from complex chemistry
calculations. The instantaneous reaction rate has been tabu-
lated a priori for chosen values of ¢; as a function of (7}, Py,
¢, Xgps» ¢;)- In [39], pressure, equivalence ratio and frac-
tion of dilution gases are independent of the fact that com-
bustion occurs or not inside the computational cell. The
equation defining the local initial temperature of the mixture,
Ty, =Ty, (2), as a function of the mixture fraction Z is:

T,;(2)=="[n(T,,(2))] 1)

where Z-! is the inversion function of the JANAF thermody-
namic table and 4 is the specific enthalpy of the mixture
given by:

h(T,,(Z))=Z h,(T,)+(1-Z)h,(T,) (22)

he (T,) is the enthalpy of the fuel vapor at unburned gas
temperature and /1, (T,) is the enthalpy of ambient gases. This
last enthalpy is given by the energy conservation equation for
ambient gas:

hu (Ta) = (1 - Yb,i ) hu (Tu ) + Yb,ihb (Tb) (23)

h, (T,) and hy, (T,,) are respectively, the enthalpy of unburned
and burned gases at the unburned and burned temperatures
computed with the thermodynamic model. Y,; is the burned
mass fraction in the ith premixed zone. With this definition
of the local initial temperature, the temperature stratification
due to the air/fuel ratio distribution is considered. The time
derivative of the progress variable is stored for discrete values
of the progress variable. An adequate refinement is needed in
the low temperature region. This corresponds to small values
of ¢;, and sufficient accuracy was obtained with seven points
[39]. The definition of the progress variable must satisfy the
following properties: ¢; must be monotonic with the progress
of combustion, ¢; varies from O at the beginning of combus-
tion (when all the fuel is in fresh gases) to 1 when all fuel is
in the burned gases. ¢; must be representative of all main
reactions. The main assumption of this tabulation method is
that the progress variable representative of the fuel consump-
tion in the engine code is equivalent to a progress variable
based on temperature in the complex chemistry code. This
assumption, valid for an adiabatic incompressible flow with
unit Lewis number, is acceptable in the framework of this
study where the relevant information is the fuel consumption
leading to a temperature increase. The reaction progress
variable ¢; is defined as:

5i - f «comb pre i (24)
m f ,pre total i

My comb, pre,i 18 the fuel mass consumed by premixed combustion,
and my . i 18 the total mass of vaporized fuel available
for premixed combustion.

After t;,, while 17ﬁi< (1-cp YTf,i’ the fuel consumption
between the cool flame and the main ignition is a function
of the progress variable reaction rate @, and is calculated
according to:

i, =, (25)

The local reaction rate of fuel dy; is deduced from Equation
(20) for the low temperature delay and from Equation (25)
for high temperature delay.

O,

=@, +@,, (26)

LT

In [39], the model behavior was first tested in different
homogeneous configurations, academic configurations at
constant volume and, in order to reproduce engine conditions,
with a volume variation corresponding to an engine rotation
speed. The initial composition was varied to test different
thermodynamic conditions corresponding to classical Diesel
and HCCI engine operating points. In [39], an excellent agree-
ment is observed with the Curran et al. [43] mechanism for
several initial thermodynamic conditions.

1.6.2 Presumed Probability Density Function:
Mixture Model

Due to the air/fuel ratio distribution in the spray, the premixed
part of combustion in DI Diesel engine is not instantaneous.
There exist multi-ignition spots due to local thermodynamic
properties evolution. With conventional approaches in 0D
modeling, this zone is defined homogeneous [30]. With new
combustion modes, this consideration is not sufficient to
estimate an Auto Ignition delay or a reaction rate. This work
makes use of a statistical approach which consists in presum-
ing the shape of the stratified zone with a Probability Density
Function. Non homogeneous mixing between fuel vapors
and surrounding gas is presumed with a standardized (3-func-
tion PDF shape. Three characteristic shapes of this function
can be distinguished according to the mixing process. Firstly,
when fuel vapor and the surrounding air are perfectly
unmixed (272': inf), the function corresponds to two peaks at
Z=0 (pure oxidizer) and Z=1 (pure fuel). Secondly, when an
air/fuel ratio distribution exists inside the spray, the function
is a continuous curve between Z=0 and Z=1. Finally, when
air and fuel are perfectly mixed (Zfz 0), i.e. homogeneous
mixture, the function is only one peak centered at the mean
value of Z.

The mixture fraction definition has been used to describe
the equivalence ratio distribution in the spray zone. The mean
value of the mixture fraction is defined as a conserved scalar
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(quantity that is not influenced by the chemical reaction) and
is expressed as:

-Y, . +7Y

-~ sY;, .
Zi - fi - +0Y2,l 0, .a,nm (27)
0, .a.nm

s is the mass stoichiometric coefficient (the mixture is
stoichiometric when sY;; =Y ). ¥y, ¥, ; are respectively the
mass fraction of fuel and the mass fraction of oxygen in the
ith spray volume, and Y, ,,,, is the mass fraction of oxygen
in the not-mixed zone (ambient gas zone). Z;? quantifies the
mixture fraction fluctuations, in the gas mixture, related to
mixing. Based on the approach used in a previous study [23]
and developed by Mauviot [18, 37] and Dulbecco [26, 27,
44], we relate statistical variables to physical phenomena.
Deriving the probabilistic definition of the mixture fraction
variance, Equation (28) is obtained. In this equation we
distinguish five contributions influencing the mixture. The
first term corresponds to the vaporized fuel flow contribution,
the second term corresponds to the entrained gas mass flow
from ambient gas zone. Both terms increase the variance.
The third term corresponds to the dissipation, it decreases the
variance. This term is the micro mixing process contribution
and indicates that the mixture state is directly related to tur-
bulence inside the chamber. Within this term, the dissipation
rate is related to the integral length scale via, ¢ =u%/L,. The
fourth term is related to the entrained gas flow from previous
spray zones, this term can increase or decrease the variance
according to the mixture state in previous spray zones. Finally,
the last term is related to the outgoing flow. This term increases
the variance: see Equation (28).

In this equation, ms, is the sum of the gaseous fuel mass
plus the mass of entrained air + EGR in the ith spray, m,,,; is
the vaporized fuel flow given by Equation (9), 711, o_.s, is the
entrained surrounding air flow in the ith spray volume from
ambient gas zone, given by Equation (8). Cqy, is a constant
parameter linked to turbulence that has to be adjusted.
My 5,—s, and n,, o . are respectively the entrained mass
flow from previous spray zone and the outgoing mass flow to
the next spray zones, given by Equation (8).

In Figure 7, dashed lines are results without interactions
based on the first multi injection approach developed in [23].
Figure 7b shows that in the case with interactions, the mean
value is higher than without interactions. Indeed, with interac-
tions, vaporized fuel from previous spray zones is entrained in
the current zone. Moreover, Figure 7c shows that in the case
with interactions the variance is smaller, and then interaction
enhances the mixture. In conclusion, this approach well repro-
duces the main goal of multi injection that is to prepare the
mixture state for subsequent injections.

1.7 Diffusion Combustion Model

The second part of the combustion model is the diffusion or
mixing-controlled combustion model. This combustion mode
is based on the approach developed by Barba et al. [6]. For
engine operating conditions corresponding to full load and
with several pilot injections, the main combustion is princi-
pally a mixing-controlled flame. This phenomenon, which is
controlled by the mixing between surrounding air and fuel
vapor, is slower than the premixed combustion. Common
zero-dimensional diffusion models are based on the available
fuel vapor mass enclosed in the control volume and on a
characteristic mixing frequency which is a function of the
turbulence density FQ(k). The available fuel mass is the dif-
ference between the injected and vaporized fuel mass and the
already burned fuel, as defined in the vaporization model. A
physical model, which takes into account the rate of injection
and the vaporization characteristic time, is then defined. The
characteristic mixing frequency, FQ(k), depends on a ratio
between the mixing velocity and a mixing length. The mix-
ing velocity is determined starting from the turbulent kinetic
energy density in the cylinder, and Equation (14) gives this
density evolution. Several solutions were developed to link
the mixing frequency with the ratio between the mixing
velocity and a mixing length [7, 45, 46]. The approach
proposed by Barba et al. [6] is here adopted.

The fuel mass consumed by the diffusion combustion is:

JCo V2, +Cik

Figure 7 gives an example of the mixture state evolution M combidify = Lmiv oV My i iy (29)
in each zone, corresponding to the case with four injections 5| - ot
in non-reactive conditions. Ny
dz"”? 1 >\ o) 1 (52 53). 1 €
= -—|(1-2) -Z"”|\m, ,+—\Z -Z"*|\m, ., -2C, ZI* =
i i vap i i i in, A—S; D, i
dt my m k
i I
‘ ! (28)
1 i-1 5 _ n2 nblnjection
7 7 2\ . i
+ E ((Zk -Z ) -Z; ) My s, +— My, 5,5,
ms 21 L R—

v

v
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Model results for an example with four injections in non-reactive conditions: a) injection rate profile; b) mean value of mixture fraction
according to crank angle degree in each zone; ¢) variance of mixture fraction according to crank angle degree in each zone.

ny is the number of nozzle holes, ¢ is the actual fuel/air
equivalence ratio, Vy;p is the mean piston velocity, my; ;s the
mass of the vaporized fuel available for diffusion combustion
obtained with (11) and according to the interaction premixed/
diffusion combustion model. The two parameters Cy, , and C;
are optimized using a limited number of characteristic operat-
ing points by matching the simulated combustion results with
experimental heat release profiles. The determined values are
then kept constant for all engine operating conditions.

2 MODEL CALIBRATION

To evaluate the overall combustion model, operating points
covering the whole engine operating range have to be used
(Fig. 8). Indeed, the model is evaluated on several steady state
operating points covering a large range of engine speeds,

loads, EGR rate, and injection strategies representative of the
whole engine application field. The various experimental
measurements were carried out on a 2 liter Renault Diesel
engine with a 16.2:1 compression ratio, equipped with a com-
mon rail system. Injection rates are modeled with Hermite
polynomials optimized for each injection.

The overall combustion chamber model is calibrated with
a limited number of operating points, using the experimental
data provided by the engine bench. The determined model
parameters are then kept constant for the whole range of
engine operating parameters. The global methodology consists
in separating the different sub-models calibrations. Therefore
in order to limit the interactions, each model is calibrated on
specific operating points. To test the model predictivity a
minimum set of engine tests is chosen, less than 10% of all
available tests.
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Set of experimental engine tests representative of the overall
engine operating range (347 tests). In this figure, engine tests
are identified with engine speed and IMEP and also with
EGR rate and injection strategy.

Turbulence sub model parameters were identified on 3D
computation results. These parameters in Equations (12, 13)
and (14) are chosen constant for all simulations. Spray sub
model parameters were identified on experimental results
performed with a Bosh injector in a closed pressurized
constant-volume vessel. Same injector type was used in the
2 liter Renault Diesel engine. Some results are shown in
Figure 3.

Theoretically, each injection is characterized by six
parameters. These parameters are summarized in Table 1.

It is assume that in pilot and pre injection all vaporized
fuel burns in premixed mode. Thus, only three parameters for
pilot and pre injection are necessary: vaporization sub model
parameter and premixed combustion sub model parameters.
Only twelve parameters have to be adjusted for a strategy
with three injections. All subsequent results are presented,
with this set of parameters kept constant.

3 SIMULATION RESULTS

3.1 Analysis of an Operating Point

In this section the operating point, described in Table 2, is
studied in detail.

Figure 9a shows experimental and computed in-cylinder
pressure. As can be seen, the computed results are in good

TABLE 1
Model parameters
Interaction
Vaporization between Premixed Diffusion
model premixed/ combustion combustion
diffusion model model
combustion
Equation (28): ;
Pilot Equation (10): c | Cp =0.1
int =
injection| C,,, = le'! Equation (20): ;
T, =57
Equation (28):
. /
Pre Equation (10): c =1 Cy =0.1
L. . int —
injection|  C,,,=1e' Equation (20): ,
T, =2¢7
Equation (28): |Equation (29):
Main Equation (10): Co =01 Cy =03 Cy,,E[26]
L. . int — Y+
injection| C,,, = le!? Equation (20): |Equation (29):
T.=1e? C,=133
TABLE 2
Operating point
Engine Injected mass Injection timing
IMEP speed EGR (mg/c) (aTDC)
(bar) (tpm) (%)
P Pilot | Pre | Main | Pilot | Pre |Main
5 1800 11.7 166 | / 158 |-26.1 / |-3.79

agreement with experiments. Moreover, computed in-cylinder
temperature is also in good agreement with temperature
computed from experimental pressure (Fig. 9b). Both
temperatures are evaluated by taking into account a variable
mixture composition given by the model. Simulated in-cylinder
temperature is computed from unburned and burned gas
temperatures. Thus it can be assumed that gas temperatures
are well estimated and could be used for pollutant formation
models, especially for NO, and CO modeling.

In Figure 10, dashed lines are results without interactions
between sprays, based on the first multi injection approach
developed in [23]. Figure 10a shows the variance evolution
in each zone with interaction and without interaction. This fig-
ure shows that variance for main injection is lower with
interaction than without interaction which means that spray
interactions enhance the mixture formation.

Figure 10b shows that the mean mixture fraction, corre-
sponding to the pilot zone, is constant even after the begin-
ning of the main injection. Indeed, the pilot mean mixture
fraction is not influenced by the main injection because the
combustion has already occurred in the pilot spray zone
(Fig.10).
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Results for the studied operating point described in Table 2: a) computed and experimental in-cylinder pressure; b) computed and
experimental in-cylinder temperatures, burned and unburned gas temperatures from simulations.

It also can be seen that the mean value and the variance of
Z for the pilot injection are not influenced by the interaction
model between sprays, as the curves corresponding to the
cases with or without interaction are mainly superimposed.
For this operating point, when the main injection occurs, the
pilot zone is characterized by an almost homogeneous
mixture, representative of a low value of the variance of Z
(Fig. 10a). In the last term of Equation (28), the outgoing
mass flow is computed using the mean value of the mixture
fraction, which is representative in this case of the almost
mixture state of the pilot zone. Moreover, the variance of Z
being low, the term related to the outgoing flow in Equation
(28) has a negligible influence on mixture fraction fluctua-
tions. Consequently, the outgoing mass flow from the pilot
zone to the main zone doesn’t modify the mean value of Z
neither the variance for the pilot zone.

The maximum of the pilot mean mixture fraction is equal
to 0.01, which corresponds to an equivalence ratio of 0.2.
Thus, the combustion for pilot injection occurs in very lean
conditions. In this multi injection strategy, the main injection
interacts mainly with the pilot zone. Composition of the
entrained gas in the main spray zone is then close to the pilot

zone composition. Moreover, combustion in the pilot zone
has occurred, therefore the proportion of entrained burned
gas in the main zone is higher and the proportion of entrained
oxygen in the main zone is smaller than in the case without
interaction. Thus, equivalence ratio for the main injection is
higher in the case with interaction.

Figure 11 shows the Heat Release Rate (HRR) associated
with the combustion process. HRR in Figure 11a is calculated
from in-cylinder pressure traces and with the heat capacity
ratio given by the model. As can be observed in Figure 11a
the computed Heat Release Rate is in good agreement with
experimental result. The model tends to overestimate the
peak for cool flame in pilot combustion (first peak). This is
probably due to the assumption that the combustion
progress variable can be described at each time using the
mean value of the progress variable, which is considered
independent of the mixture fraction: ¢(Z;) =¢;, VZ,. Figure 11b
shows HRR for premixed and diffusion combustions
associated to pilot and main injections. It can be observed
that the vaporized fuel corresponding to the pilot injection
burns totally in premixed-flame conditions, while the vapor-
ized fuel associated to the main injection burns mainly in
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Results for the studied operating point described in Table 2: a) variance of mixture fraction in each zone with and without interactions;

b) mean value of mixture fraction in each spray zone with and without interactions.
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diffusion-flame conditions. Furthermore, Figure 11b shows
that in the case with interactions, HRR for premixed com-
bustion associated to main injection is greater than without
interaction.

3.2 Comparison with Experimental Data

3.2.1 Overall Operating Range

To evaluate the overall combustion model, operating points
covering the whole engine operating range have to be used
(Fig. 7). Indeed, the model is evaluated on several steady
state operating points covering a large range of engine
speeds, loads, EGR rates, and injection strategies representa-
tive of the whole engine application field.

The following figures present results for all tests, summa-
rized in Figure 7, comparing the most important parameters
in combustion prediction: peak pressure value, peak pressure
position, IMEP values and crank angle values at 5%, 10%
and 50% of burned fuel.

In Figure 12, tests in the tolerance range are represented in
blue and tests out of the tolerance range in red. For all operat-
ing tests a good agreement is obtained, indeed for maximum
pressure 90% of tests are in the tolerance range and for all
other combustion parameters more than 70% of tests are in
good agreement. It is important to notice that the same set of
parameters has been used in the combustion model for all of
these tests and that less than 10% of available tests have been
used to tune the parameters. The difference between the com-
puted and measured values of IMEP is mainly due to a not
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accurate modeling of the wall losses during expansion at the
end of the engine cycle.

CAOS5 figure shows that some points are out of the tolerance
range. For some of these tests, the crank angle value when
five percent of fuel is burned is overestimated. This bad
agreement is due to the definition of the combustion progress
variable that is described at each time using a homogeneous
progress variable based on the amount of fuel consumed,
which can lead to delay the first stages of combustion by
averaging this input parameter of the reaction rate.

For some of the tests out of tolerance, the crank angle value,
when five percent of fuel is burned, is underestimated. These
tests correspond to late main injection timing, resulting in a
possible interaction between spray and wall which is not
taken into account by the model. Due to this wall interaction,
the model has a bad evaluation of the vaporization rate and

entrained surrounding gas rate, the available mass for
combustion is then overestimated.

CAS50 figure shows that some points are out of the tolerance
range and for the majority of these points the crank angle
when 50% of fuel is burn is overestimated. These results
show that the end of combustion is not accurately modeled,
mainly due to wall interactions, which are not taken into
account in the presented approach.

3.2.2 Parametric Variation

Figures 13 shows results for pressure peak value, pressure
peak position, IMEP values and crank angle values at which
5%, 10% and 50% of fuel is burned. These results are
obtained for 12 multi-injection tests with EGR rate variations
and with SOI variations. For each SOI, 3 values of EGR rate
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are used. As previously mentioned, these results have been
obtained with one set of parameters. In spite of a difference
on the values of CA50, the model results well follow the
trends. The difference between the computed and measured
values of CAS50 is due to a bad modeling of the end of diffu-
sion combustion, mainly due to the increase of burned gases
in the combustion chamber and wall interactions. These
results show that the model is adapted to engine pre-mapping
as it is able to describe the combustion process with parametric
variations.

CONCLUSIONS

This paper presents an original approach for Diesel engine
combustion quasi dimensional modeling. Main contributions
of this work are the new description of the premixed combus-
tion phase and the extension of the model to multi injection
cases. The premixed combustion model makes use of a statis-
tical description of the air/fuel ratio distribution inside the
spray region. The extended model for multi injection is based
on a repartition of entrained gas flow into the current spray
zone. Moreover, this extended model takes into account the
impact of mixture state in previous spray zones on the mixture
state in the current spray zone.

Operating points with large mixing times have been used
for model validation and a good agreement between experi-
mental and computed values has been shown. For a wide
range of engine operating points, simulated cylinder pressure
and Heat Release Rate traces show a good agreement with
experimental measurements. The overall objective being the
ability of the model to reproduce combustion modes ranging
from conventional Diesel mode to full HCCI mode, future
work should improve the model to take into account in-cylin-
der temperature distribution to model full HCCI combustion.
To improve the existing model a more physical vaporization
model is required, especially to model cold start conditions.
Indeed, in this case, vaporization affects the ignition delay,
the shape of the PDF and the fuel mass available for each
combustion mode. Furthermore, a more detailed spray model
can improve general results especially in cases with multi
injection. Indeed, wall impingement has a great impact on
mixing process and combustion.
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