Articles citing this article
The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
H. Barths , H. Pitsch , N. Peters
Oil & Gas Science and Technology - Rev. IFP, 54 2 (1999) 233-244
Published online: 2006-12-01
This article has been cited by the following article(s):
65 articles
Large eddy simulation of spray combustion using the spray flamelet/progress variable model: Further extension and validation
Yicun Wang, Changxiao Shao, Tai Jin, Kun Luo and Jianren Fan Physics of Fluids 35 (10) (2023) https://doi.org/10.1063/5.0167515
Sooting tendency of isopropanol-butanol-ethanol (IBE)/diesel surrogate blends in laminar diffusion flames
Abhee Singh and Nicholas Tsolas Combustion and Flame 250 112630 (2023) https://doi.org/10.1016/j.combustflame.2023.112630
Investigation of the derivation and consistency of the quasi-two-dimensional flamelet models for non-premixed flames
Panlong Yu, Ryoichi Kurose and Hiroaki Watanabe Physics of Fluids 35 (1) (2023) https://doi.org/10.1063/5.0134942
A simplified two-mixture-fraction-based flamelet modelling and its validation on a non-premixed staged combustion system
Panlong Yu and Hiroaki Watanabe Combustion Theory and Modelling 27 (1) 37 (2023) https://doi.org/10.1080/13647830.2022.2144460
Study on the Combustion Mechanism of Diesel/Hydrogen Dual Fuel and the Influence of Pilot Injection and Main Injection
Longlong Xu, Haochuan Dong, Shaohua Liu, Lizhong Shen and Yuhua Bi Processes 11 (7) 2122 (2023) https://doi.org/10.3390/pr11072122
Analysis of a Quasi-Two-Dimensional Flamelet Model on a Three-Feed Non-premixed Oxy-Combustion Burner
Panlong Yu, Hiroaki Watanabe, Heinz Pitsch, et al. Flow, Turbulence and Combustion 108 (1) 303 (2022) https://doi.org/10.1007/s10494-021-00274-x
A reduced-order model for turbulent reactive sprays in compression ignition engines
Abhishek Y. Deshmukh, Marco Davidovic, Temistocle Grenga, et al. Combustion and Flame 236 111751 (2022) https://doi.org/10.1016/j.combustflame.2021.111751
OH, PAH, and sooting imaging in piloted liquid-spray flames of diesel and diesel surrogate
Yejun Wang, Ayush Jain, Christian Schweizer and Waruna D. Kulatilaka Combustion and Flame 231 111479 (2021) https://doi.org/10.1016/j.combustflame.2021.111479
Implementation of multi-component diesel fuel surrogates and chemical kinetic mechanisms for engine combustion simulations
Prithwish Kundu, Chao Xu, Sibendu Som, et al. Transportation Engineering 3 100042 (2021) https://doi.org/10.1016/j.treng.2020.100042
Phenomenological soot modeling with solution mapping optimization of biodiesel-diesel blends in diesel engines
Alumah Arad, Eran Sher and Giora Enden Thermal Science and Engineering Progress 18 100544 (2020) https://doi.org/10.1016/j.tsep.2020.100544
Chemical kinetic mechanism for diesel/biodiesel/ethanol surrogates using n-decane/methyl-decanoate/ethanol blends
Dario Alviso, Marina Weyl Costa, Lara Backer, et al. Journal of the Brazilian Society of Mechanical Sciences and Engineering 42 (2) (2020) https://doi.org/10.1007/s40430-020-2186-9
Abhishek Y. Deshmukh, Metin Korkmaz, Marco Davidovic, Dominik Goeb, Carsten Giefer, Mathis Bode, Liming Cai and Heinz Pitsch 1 (2019) https://doi.org/10.4271/2019-24-0001
Effect of toluene content on the combustion and emissions of large two-stroke marine diesel engine
Xiuxiu Sun, Xingyu Liang, Gequn Shu, Yuesen Wang and Yong Chen Applied Thermal Engineering 159 113909 (2019) https://doi.org/10.1016/j.applthermaleng.2019.113909
Experimental Study and a Short Kinetic Model for High-Temperature Oxidation of Methyl Methacrylate
Shanmugasundaram Dakshnamurthy, Denis A. Knyazkov, Artem M. Dmitriev, et al. Combustion Science and Technology 191 (10) 1789 (2019) https://doi.org/10.1080/00102202.2018.1535492
Mathematical Modelling of Gas-Phase Complex Reaction Systems: Pyrolysis and Combustion
Perrine Pepiot, Liming Cai and Heinz Pitsch Computer Aided Chemical Engineering, Mathematical Modelling of Gas-Phase Complex Reaction Systems: Pyrolysis and Combustion 45 799 (2019) https://doi.org/10.1016/B978-0-444-64087-1.00016-4
Development of a surrogate fuel mechanism for application in two-stroke marine diesel engine
Xiuxiu Sun, Xingyu Liang, Gequn Shu, et al. Energy 153 56 (2018) https://doi.org/10.1016/j.energy.2018.03.042
Combustion Simulation of a Diesel Engine with Split Injections by Lagrangian Conditional Moment Closure Model
Karam Han, Byungkwan Jang, Getachew Lakew and Kang Y. Huh Combustion Science and Technology 190 (1) 1 (2018) https://doi.org/10.1080/00102202.2017.1354854
Advanced Biofuels and Beyond: Chemistry Solutions for Propulsion and Production
Walter Leitner, Jürgen Klankermayer, Stefan Pischinger, Heinz Pitsch and Katharina Kohse‐Höinghaus Angewandte Chemie International Edition 56 (20) 5412 (2017) https://doi.org/10.1002/anie.201607257
Modeling soot formation in diesel-biodiesel flames
Alumah Arad, Eran Sher and Giora Enden Fuel 206 437 (2017) https://doi.org/10.1016/j.fuel.2017.06.024
Scalar dissipation rate based multi-zone model for early-injected and conventional diesel engine combustion
Bernhard Jochim, Metin Korkmaz and Heinz Pitsch Combustion and Flame 175 138 (2017) https://doi.org/10.1016/j.combustflame.2016.08.003
Synthese, motorische Verbrennung, Emissionen: Chemische Aspekte des Kraftstoffdesigns
Walter Leitner, Jürgen Klankermayer, Stefan Pischinger, Heinz Pitsch and Katharina Kohse‐Höinghaus Angewandte Chemie 129 (20) 5500 (2017) https://doi.org/10.1002/ange.201607257
Development of multi-component diesel surrogate fuel models – Part II: Validation of the integrated mechanisms in 0-D kinetic and 2-D CFD spray combustion simulations
Hiew Mun Poon, Kar Mun Pang, Hoon Kiat Ng, Suyin Gan and Jesper Schramm Fuel 181 120 (2016) https://doi.org/10.1016/j.fuel.2016.04.114
Development of a Reduced n-Decane/α-Methylnaphthalene/Polycyclic Aromatic Hydrocarbon Mechanism and Its Application for Combustion and Soot Prediction
Liang Qiu, Xiaobei Cheng, Xin Wang, et al. Energy & Fuels 30 (12) 10875 (2016) https://doi.org/10.1021/acs.energyfuels.6b02186
Assessment of flamelet versus multi-zone combustion modeling approaches for stratified-charge compression ignition engines
Pinaki Pal, SeungHwan Keum and Hong G Im International Journal of Engine Research 17 (3) 280 (2016) https://doi.org/10.1177/1468087415571006
Systematic Analysis Strategies for the Development of Combustion Models from DNS: A Review
P. Trisjono and H. Pitsch Flow, Turbulence and Combustion 95 (2-3) 231 (2015) https://doi.org/10.1007/s10494-015-9645-x
Mixing and scalar dissipation rate statistics in a starting gas jet
N. Soulopoulos, Y. Hardalupas and A. M. K. P. Taylor Physics of Fluids 27 (12) (2015) https://doi.org/10.1063/1.4935233
Surrogate fuels for the simulation of diesel engine combustion of novel biofuels
Bruno Kerschgens, Liming Cai, Heinz Pitsch, Andreas Janssen, Markus Jakob and Stefan Pischinger International Journal of Engine Research 16 (4) 531 (2015) https://doi.org/10.1177/1468087414534565
Jonas Galle, Roel Verschaeren and Sebastian Verhelst 1 (2015) https://doi.org/10.4271/2015-01-0950
An experimental and modeling study of n -octanol combustion
Liming Cai, Yasar Uygun, Casimir Togbé, et al. Proceedings of the Combustion Institute 35 (1) 419 (2015) https://doi.org/10.1016/j.proci.2014.05.088
Analysis of the sooting propensity of C-4 and C-5 oxygenates: Comparison of sooting indexes issued from laser-based experiments and group additivity approaches
Romain Lemaire, Denis Lapalme and Patrice Seers Combustion and Flame 162 (9) 3140 (2015) https://doi.org/10.1016/j.combustflame.2015.03.018
Optimized chemical mechanism for combustion of gasoline surrogate fuels
Liming Cai and Heinz Pitsch Combustion and Flame 162 (5) 1623 (2015) https://doi.org/10.1016/j.combustflame.2014.11.018
Chemical kinetic study of a novel lignocellulosic biofuel: Di-n-butyl ether oxidation in a laminar flow reactor and flames
Liming Cai, Alena Sudholt, Dong Joon Lee, et al. Combustion and Flame 161 (3) 798 (2014) https://doi.org/10.1016/j.combustflame.2013.10.003
Probability density function approach coupled with detailed chemical kinetics for the prediction of knock in turbocharged direct injection spark ignition engines
Dirk Linse, Andreas Kleemann and Christian Hasse Combustion and Flame 161 (4) 997 (2014) https://doi.org/10.1016/j.combustflame.2013.10.025
Assessing LES models based on tabulated chemistry for the simulation of Diesel spray combustion
J. Tillou, J.-B. Michel, C. Angelberger and D. Veynante Combustion and Flame 161 (2) 525 (2014) https://doi.org/10.1016/j.combustflame.2013.09.006
Investigating Diesel Engine Performance and Emissions Using CFD
Tarek M. Belal, El Sayed M. Marzouk and Mohsen M. Osman Energy and Power Engineering 05 (02) 171 (2013) https://doi.org/10.4236/epe.2013.52017
Eric M. Doran, Heinz Pitsch and David J. Cook 1 (2012) https://doi.org/10.4271/2012-01-0133
Soot formation in flames of model biodiesel fuels
Qiyao Feng, Aydin Jalali, Adam M. Fincham, et al. Combustion and Flame 159 (5) 1876 (2012) https://doi.org/10.1016/j.combustflame.2012.01.003
An extended multi-regime flamelet model for IC engines
Varun Mittal, David J. Cook and Heinz Pitsch Combustion and Flame 159 (8) 2767 (2012) https://doi.org/10.1016/j.combustflame.2012.01.014
Thermophysical properties needed for the development of the supercritical diesel combustion technology: Evaluation of diesel fuel surrogate models
Ronghong Lin and Lawrence L. Tavlarides The Journal of Supercritical Fluids 71 136 (2012) https://doi.org/10.1016/j.supflu.2012.08.003
Towards cleaner combustion engines through groundbreaking detailed chemical kinetic models
Frédérique Battin-Leclerc, Edward Blurock, Roda Bounaceur, et al. Chemical Society Reviews 40 (9) 4762 (2011) https://doi.org/10.1039/c0cs00207k
Bruno Kerschgens, Anyelo Vanegas and Heinz Pitsch 1 (2011) https://doi.org/10.4271/2011-24-0014
Stephane Jay and Olivier Colin 1 (2010) https://doi.org/10.4271/2010-01-0628
A New 0D Diesel HCCI Combustion Model Derived from a 3D CFD Approach with Detailed Tabulated Chemistry
A. Dulbecco, F.-A. Lafossas, G. Mauviot and T. J. Poinsot Oil & Gas Science and Technology - Revue de l'IFP 64 (3) 259 (2009) https://doi.org/10.2516/ogst/2008051
Experimental comparison of soot formation in turbulent flames of Diesel and surrogate Diesel fuels
R. Lemaire, A. Faccinetto, E. Therssen, et al. Proceedings of the Combustion Institute 32 (1) 737 (2009) https://doi.org/10.1016/j.proci.2008.05.019
Eric Doran, Heinz Pitsch and David J. Cook 1 (2009) https://doi.org/10.4271/2009-01-1917
Incorporating unsteady flow-effects in flamelet-generated manifolds
S. Delhaye, L.M.T. Somers, J.A. van Oijen and L.P.H. de Goey Combustion and Flame 155 (1-2) 133 (2008) https://doi.org/10.1016/j.combustflame.2008.03.023
V. Luckhchoura, H. W. Won, A. Sharma, G. Paczko and N. Peters 1 (2008) https://doi.org/10.4271/2008-01-0950
Experimental investigation of surrogates for jet and diesel fuels
Robert H. Natelson, Matthew S. Kurman, Nicholas P. Cernansky and David L. Miller Fuel 87 (10-11) 2339 (2008) https://doi.org/10.1016/j.fuel.2007.11.009
Harry Lehtiniemi, Yongzhe Zhang, Rajesh Rawat and Fabian Mauss 1 (2008) https://doi.org/10.4271/2008-01-0957
C. Felsch, V. Luckhchoura, J. Weber, N. Peters, C. Hasse, W. Wiese, Stefan Pischinger, A. Kolbeck and P. Adomeit 1 (2007) https://doi.org/10.4271/2007-01-0167
J. T. Farrell, N. P. Cernansky, F. L. Dryer, C. K. Law, D. G. Friend, C. A. Hergart, R. M. McDavid, A. K. Patel, Charles J. Mueller and H. Pitsch 1 (2007) https://doi.org/10.4271/2007-01-0201
S. Jay, P. Béard and A. Pires da Cruz 1 (2007) https://doi.org/10.4271/2007-01-0162
MODELING DIESEL SPRAY IGNITION USING DETAILED CHEMISTRY WITH A PROGRESS VARIABLE APPROACH
HARRY LEHTINIEMI, FABIAN MAUSS, MICHAEL BALTHASAR and INGEMAR MAGNUSSON Combustion Science and Technology 178 (10-11) 1977 (2006) https://doi.org/10.1080/00102200600793148
Numerical simulation and laser-based imaging of mixture formation, ignition, and soot formation in a diesel spray
S. Vogel, C. Hasse, J. Gronki, S. Andersson, N. Peters, J. Wolfrum and C. Schulz Proceedings of the Combustion Institute 30 (2) 2029 (2005) https://doi.org/10.1016/j.proci.2004.08.202
Harry Lehtiniemi, Fabian Mauss, Michael Balthasar and Ingemar Magnusson 1 (2005) https://doi.org/10.4271/2005-01-3855
High-pressure multicomponent liquid sprays: Departure from ideal behaviour
M F Trujillo, D J Torres and P J O'Rourke International Journal of Engine Research 5 (3) 229 (2004) https://doi.org/10.1243/1468087041549616
J. Weber, N. Peters, H. Bockhorn and R. Pittermann 1 (2004) https://doi.org/10.4271/2004-01-1840
Flamelet modelling of non-premixed turbulent combustion with local extinction and re-ignition
Heinz Pitsch, Chong Cha and Sergei Fedotov Combustion Theory and Modelling 7 (2) 317 (2003) https://doi.org/10.1088/1364-7830/7/2/306
Applying the Representative Interactive Flamelet Model to Evaluate the Potential Effect of Wall Heat Transfer on Soot Emissions in a Small-Bore Direct-Injection Diesel Engine
C. Hergart and N. Peters Journal of Engineering for Gas Turbines and Power 124 (4) 1042 (2002) https://doi.org/10.1115/1.1473147
Carl Hergart and Norbert Peters 1 (2001) https://doi.org/10.4271/2001-01-1001
Computational fluid dynamics modelling of non-premixed combustion in direct injection diesel engines
H Barths, C Hasse and N Peters International Journal of Engine Research 1 (3) 249 (2000) https://doi.org/10.1243/1468087001545164
Simulation of combustion in direct injection diesel engines using a eulerian particle flamelet model
H. Barths, C. Hasse, G. Bikas and N. Peters Proceedings of the Combustion Institute 28 (1) 1161 (2000) https://doi.org/10.1016/S0082-0784(00)80326-4
C. Hasse, G. Bikas and N. Peters 1 (2000) https://doi.org/10.4271/2000-01-2934
C. Hasse, H. Barths and N. Peters 1 (1999) https://doi.org/10.4271/1999-01-3547
C. Hergart, H. Barths and N. Peters 1 (1999) https://doi.org/10.4271/1999-01-3550